EVALUATION OF FUEL SPRAY ATOMIZATION MODELS FOR CONDITIONS APPLICABLE TO LARGE MARINE DIESEL ENGINES

Christos Chryssakis, Lambros Kaiktsis
Dept. of Naval Architecture & Marine Engineering
National Technical University of Athens
Heroon Polytechniou 9, GR-15773 Zografou, Greece
Phone: +30-210-77211441, Fax: +30-210-7721117
cchryssa@naval.ntua.gr, kaiktsis@naval.ntua.gr

ABSTRACT
Due to the large size of marine diesel engines (an order of magnitude larger than automotive ones) it is expected that the physics of spray atomization, namely the primary and secondary breakup mechanisms, may differ from those encountered in the smaller automotive engines. Typically, diesel sprays in small engines disintegrate according to the shear and catastrophic breakup mechanisms. It is expected that, due to larger droplet sizes, injection velocities, and cylinder pressure, the catastrophic breakup mechanism will prevail in large marine diesel engines. The significant differences in the controlling non-dimensional parameters (Reynolds and Weber numbers) suggest that an evaluation of currently available atomization models for the conditions of large marine engines is necessary. In this work, we perform a preliminary evaluation of the most commonly used Lagrangian models for diesel sprays, namely the KH-RT, and E-TAB models, as well as the recently developed Unified Spray Breakup (USB) model. The problem setup consists of a constant-volume vessel, in which fuel injection is simulated with a KIVA-based CFD code. Here, tip penetration and breakup mechanisms are reported and compared for the three models of interest. Insight from experimental measurements is used to evaluate the computational results.

INTRODUCTION
A major challenge with modelling fuel sprays for large marine diesel engines is related to the size of the orifice of the injector nozzle, which is an order of magnitude larger than the nozzles typically used in automotive applications. The difference in size strongly affects the Reynolds and Weber numbers of the emerging liquid jet, which control the primary and, subsequently, the secondary atomization mechanisms.

The atomization mechanisms are controlled by turbulence levels (depending on the Reynolds number), aerodynamic interactions between the liquid fuel and the surrounding air (triggering instabilities on the gas-liquid interface), and surface tension effects. The competing effects of aerodynamic forces and surface tension are expressed by the Weber number of the flow, which controls the atomization mechanism [1]. Typically, diesel sprays in small engines disintegrate according to the shear and catastrophic breakup mechanisms [2]. It is expected that, due to larger droplet sizes, injection velocities, and cylinder pressure, the catastrophic breakup mechanism will prevail in large marine diesel engines. Operating conditions in these engines correspond to injection pressures of the order of 1000 bar, injection velocities of the order of 500 m/s, and maximum cylinder pressures of the order of 150 bar [3]. The nozzle diameter is typically of the order of 1 mm, about an order of magnitude larger than in automotive applications. The resulting level of Reynolds (Re) and Weber (We) numbers of the spray jet is given in Table 1, and compared with typical values for automotive applications.

Table 1: Typical values of Spray Reynolds and Weber numbers for Marine and Automotive applications.

<table>
<thead>
<tr>
<th></th>
<th>Marine</th>
<th>Automotive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re</td>
<td>120,000</td>
<td>20,000</td>
</tr>
<tr>
<td>We</td>
<td>500,000</td>
<td>50,000</td>
</tr>
</tbody>
</table>

In the followings, a brief description of the three Lagrangian atomization models is given, accompanied by the description of the test cases and a grid sensitivity analysis. Typical characteristics of fuel sprays, namely the tip penetration and breakup mechanisms, are presented and comparisons between the models are performed. Insight from experimental measurements is used to evaluate the computational results.

COMPUTATIONAL MODELS
The computational models under consideration in this work are the Enhanced - Taylor Analogy Breakup (E-TAB), Kelvin-Helmholtz - Rayleigh-Taylor (KH-RT) and the Unified Spray Breakup (USB) model. The first two models have been extensively used for diesel spray simulations in automotive applications, while the E-TAB has been used for marine spray applications as well [3, 6]. The computational platform is the code KIVA-3V [7] for the KH-RT and USB models, and KIVA-3 [8] for E-TAB.

E-TAB Model
The E-TAB model reflects a cascade of droplet breakups, in which the breakup condition is determined by the Taylor
The fuel injection process has been divided into three subprocesses, namely, primary atomization, drop deformation and aerodynamic drag, and secondary atomization [2]. The primary atomization is modelled based on the Huh et al. approach [11]. The model considers the effects of both infinitesimal wave growth on the jet surface and jet turbulence including cavitation dynamics. Initial perturbations on the jet surface are induced by the turbulent fluctuations in the jet, originating from the shear stress along the nozzle wall and possible cavitation effects. This approach overcomes the inherent difficulty of wave growth models, where the exponential wave growth rate becomes zero at zero perturbation amplitude. The model is based on the following two main assumptions:

1. The integral length scale of turbulence is the dominant length scale of atomization.
2. The time scale of the atomization is the linear sum of the turbulence and wave growth time scales.

The drop deformation and secondary atomization have been modelled based on the physical properties of the system, independent of the way the droplets were created. The secondary atomization has been further divided into four breakup regimes, based on experimental observations reported in the literature [1]. The determination of the appropriate secondary atomization regime is based solely on the Weber number of the droplets. For low Weber numbers (less than 12) atomization does not occur and only droplet deformation takes place. For higher values of Weber number, the following regimes are considered:

- Bag breakup, 12<We<20
- Multimode breakup, 20<We<80
- Shear breakup, 80<We<800
- Catastrophic breakup, 800<We

The breakup times and resulting droplet sizes for each breakup regime are estimated based on experimentally verified correlations for each regime.

Once droplet secondary atomization has been completed, further disintegration (tertiary breakup) does not occur, and droplets are assumed to reach a stable condition.

Test Cases

The problem setup consists of a constant-volume chamber with dimensions 20cm×10cm×10cm. The chamber is filled with N2, the pressure is maintained at 100 bar (10 MPa) and temperature at 300 K. The temperature has been kept low so that only the liquid atomization of the fuel jets is tested, without including the evaporation process. Two different nozzle diameters are tested, one representative of large, low-speed two-stroke diesel engines, and one corresponding to medium-speed marine engines, as shown in Table 2.

Table 2: Nozzle characteristics.

<table>
<thead>
<tr>
<th>Application</th>
<th>Diameter [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nozzle A</td>
<td>Large, Low-Speed</td>
</tr>
<tr>
<td>Nozzle B</td>
<td>Medium-Speed</td>
</tr>
</tbody>
</table>
The injection velocity profile for Nozzle A is representative of a typical velocity profile for a 2-stroke engine, as measured by Wärtsilä Switzerland [3] and is illustrated in Figure 1.

![Figure 1: Injection velocity history for Nozzle A.](image)

For Nozzle B, a simplified, constant injection rate has been used, with an injection velocity of 300 m/s, representative of injection in medium-speed marine engines [12].

Grid Sensitivity Study

Grid sensitivity has been assessed by using three different grid resolutions in the injection direction. Namely, grid spacings of 1.5, 2.0, and 3.0 mm have been tested, and the spray tip penetrations have been compared, for Nozzle A, for each one of the breakup models. The results are shown in Figures 2, 3, and 4, for the E-TAB, KH-RT, and USB models respectively. Interestingly, the E-TAB model has negligible grid dependency, while the USB model is grid independent for Dz<2.0 mm. The KH-RT model is more grid-dependent and seems to converge for Dz=1.5 mm.

RESULTS AND DISCUSSION

Observation of Figures 2-4 reveals significant differences in tip penetration predictions for the three models. The E-TAB predicts the lowest penetration, the USB the highest, and KH-RT lies in the middle. These differences can be attributed to the different assumptions and breakup mechanisms employed in each model.

The long penetration of the USB model is mainly due to the way that primary atomization is modelled. At relatively low speeds, encountered at the start of the injection, the liquid core does not break up easily and its momentum is maintained. Furthermore, it is assumed that its aerodynamic drag coefficient is equal to that of a cone (C_D=0.3), due to its cone-like shape. Therefore, deceleration is slow, leading to long penetration lengths. As injection velocities increase, primary atomization occurs very quickly, resulting in small drops that deform and disintegrate according to the secondary atomization mechanisms discussed above.

Experimental measurements are not available yet for this case, so the model predictions cannot be confirmed. However, it appears that the primary atomization mechanism of the USB model is partly correct: due to low injection velocities at the onset of the injection, the resulting liquid core breaks up slowly, yielding large droplets, and penetrating relatively deep into the ambient gas, according to Sallam and Faeth [13]. These droplets should disintegrate in later times, therefore resulting in lower tip penetration at later times. Implementing this mechanism in the model will likely allow predicting the changing of the slope of the tip penetration, observed often in experimental measurements of tip penetration [12].

![Figure 2: Results of Grid Sensitivity Analysis for the E-TAB model: spray penetration vs. time, for different sizes of computational cells.](image)

![Figure 3: Results of Grid Sensitivity Analysis for the KH-RT model: spray penetration vs. time, for different sizes of computational cells.](image)

![Figure 4: Results of Grid Sensitivity Analysis for the USB model: spray penetration vs. time, for different sizes of computational cells.](image)

This explanation can only partly justify the large differences between the tip penetrations among the three models. Further research, supported by experimental measurements, is required for clarifying this issue.

The very low penetration of the KH-RT model is attributed to the coefficient B_1 that controls the breakup rate. Calibration
of this constant, based on experimental data, is necessary for correct predictions for each type of injector. One more value has been tested, \(B_1 = 10 \), and the tip penetration is significantly higher, closer to the USB model predictions, as shown in Figure 5.

![Figure 5: Tip Penetration Results for KH-RT, \(B_1 = 4.7 \) and 10.](image)

Injector Nozzle with \(d_o = 0.37 \text{mm} \)

A second series of computations has been performed with an injector nozzle diameter of \(d_o = 0.37 \text{ mm} \), injection duration of 2.5ms, and injected mass of 68mg. The results for tip penetration are presented in Figure 6.

![Figure 6: Tip Penetration Results for \(d_o = 0.37, U_{inj} = 300 \text{m/s} \).](image)

In this case, tip penetration predictions with the USB and E-TAB models are nearly identical. We underline that the initial phase of the injection is not considered and only high velocities have been used. This observation indicates that the very high tip penetrations in the previous case for the USB model are indeed due to modelling of the primary atomization mechanism at low injection velocities. The E-TAB model has been previously tested for very similar conditions [11] and the results were reasonably close to experimental measurements.

As for the larger nozzle (A), the KH-RT predicted penetration lengths are significantly shorter, when \(B_1 = 4.7 \), due to model calibration reasons.

CONCLUSIONS

In this work a preliminary comparison of three Lagrangian spray atomization models has been performed, for two different injector nozzles, representative of low- and medium-speed marine engines, respectively.

It is concluded that when a realistic injection velocity profile is used, the USB model can lead to very high tip penetration predictions, because it fails to handle correctly primary atomization at low injection velocities.

The KH-RT model depends strongly on calibration and has to be tuned for proper predictions of marine diesel sprays.

It is also interesting to explore the reasons that lead the E-TAB model to significantly lower predictions of tip penetration than the KH-RT and the USB models when large nozzle diameters are used.

ACKNOWLEDGMENT

The authors acknowledge the financial support by a Marie-Curie International Reintegration Grant (IRG), Agreement Nr. 207232.

REFERENCES

