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Abstract

A numerical study of heat transfer on droplets with an initial deformation at high Reynolds number is described.
The two-phase flow is computed with a 3D DNS program using the Volume-of-Fluid method. For the droplets
initial prolate and oblate shapes with an axial approaching flow are investigated. Additionally a spherical shape
is used as reference. The initial droplet Reynolds number for the present study is Reg = 660 for all investigated
cases. Due to the fact that the steady droplet velocity for the considered droplets is much lower than the initial
velocity of the droplets, the droplet velocity is decreasing during the simulation. To gain more knowledge about
the influence of deformation on the heat transfer, the time dependent, spatial averaged Nusselt number Nu,
and the time and spatial averaged Nusselt number Nu,, is matched with the temperature and velocity field
around a deformed droplet. By this comparison the oscillation phase with the largest heat transfer is observed.
As another important parameter the droplet surface is taken into account.

Introduction

The rate of heat transfer from the surrounding gas to droplets in sprays is a critical design parameter of
many technical spray systems as for instance in automotive engines or gas turbines. In these processes the
considered droplets respectively liquid ligaments are in many cases strongly deformed and the droplet velocity is
heavily unsteady. Additionally due to the high velocities the flow around the droplet is transient and fully 3D.
Because of this difficulties strongly deformed droplets have been studied rarely in the past, neither numerically
nor experimentally.

In the present study it has been assumed that the droplets are deformed initially due to the primary breakup.
During this breakup process strongly deformed liquid ligaments emerge which are approximated by two idealized
droplet shapes in this study as a first step. The numerical investigation has been performed at high Reynolds
numbers (Re > 270), which means that the flow is fully 3D and time dependent. The initial Reynolds number
Reg = DoUp/vq of the considered droplets is Req = 660, where Dy is the diameter of a spherical droplet with
the same volume, Uy the initial droplet velocity and v4 the kinematic viscosity of the disperse phase. To take
the 3D flow character into account the investigation has been performed fully 3D. Additionally no restrictions
on the deformation of the droplets is assumed. The programs efficiency and reliability for the computation of
strongly deformed two-phase flow has been presented already in [1].

Analysis and numerical method

The inhouse 3D CFD program FS3D (Free Surface 3D) has been developed to compute the Navier-Stokes
equations for incompressible flows with free surfaces. The equations are solved without using a turbulence model
by Direct Numerical Simulation (DNS). The governing conservation equations for momentum and mass are
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where T is the capillary stress tensor which adds the surface tensor force to the momentum equation. Further-
more u, p, i and p are the velocity vector, the density, the dynamic viscosity and the pressure, respectively.

Additionally the energy equation is solved. For the above mentioned incompressible flow and for a fluid
with constant fluid properties in each phase the energy equation is decoupled from the equations of motion.
Therefore, the energy equation can be solved after the computation of the flow field. The energy equation has
been implemented in the temperature form
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where T is the temperature, c, the specific heat and X the heat conductivity. The dissipation term ® can be
neglected for all mentioned flows due to the low Eckert number. The implementation and validation of the
energy equation has been described in [2].

In two phase flows additional information about the interface position between the disperse and the con-
tinuous phase are needed. There are two different approaches to manage this task. The first one is the explicit
tracking of the interface (Front-Tracking) and the other is the tracking of the disperse phase (Volume-Tracking).
In FS3D a Volume-Tracking method, well known as the Volume-of-Fluid (VOF) method, is used [3]. In the
VOF-method an additional transport equation
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for the volume fraction of the disperse phase is solved. The variable f is called the VOF-variable. The VOF-
variable is

0 in the continuous phase
f=< 0< f<1 atthe interface (5)
1 in the disperse phase

With the VOF-variable the change of the fluid properties across the interface can be computed by using
the equations

p(x,t) = pa+ (pc—pa) f(x,1) (6)
N(Xa t) = Md+ (,U/c - Nd) f(X, t) (7)

where the subscript ¢ indicates the continuous phase and d the disperse phase. Additional fluid properties like
the specific heat ¢, and the heat conductivity A are obtained in the same way with the VOF-variable. To ensure
a sharp interface and to suppress numerical dissipation of the disperse phase in each time step the interface
is reconstructed with the PLIC-method (Piecewise linear interface reconstruction computation) [4]. After the
reconstruction, the disperse phase is transported on the basis of the reconstructed distribution of the disperse
phase.

The spatial discretization is realized by a structured Finite Volume scheme on a staggered grid. In each
phase the discretization is second-order accurate. Due to the high gradients across the interface a limiter is
used to prevent the generation of oscillations and spurious solutions. The program is parallelized with domain
decomposition using the communication library MPI. A multigrid solver is included to solve the Poisson equation
for the pressure. Additionally a coordinate transformation from the inertial system to the droplet system is
implemented [5] to track the droplet for a longer time without generating very large computational domains.

Results

In the presented simulations, the liquid has been assumed to have the properties of water at 20°C except
for the dynamic viscosity. The dynamic viscosity is sz, = 10 g0 = 1- 1073 kg/(ms). The higher viscosity has
been chosen to avoid parasitic currents [6]. For the surrounding gas the properties of air have been chosen. The
initial temperature of the liquid was Ty = 350 K and Tg = 293.15 K for the gaseous phase.

The computational domain is displayed in Fig. 1. The 3D channel geometry for a spherical droplet with
the diameter D =1-102misz =12-10"3m, y = 6-10"3m and z = 6 - 10~ m. The gravitational force acts
in the negative z-direction.

To perform the study concerning the heat transfer of deformed droplets, two initially strongly deformed
droplets have been computed. One is a cylinder with diameter D = 0.451-1073m and the cylinders axis parallel
to the flow direction. The other initial shape is a disk with diameter D = 1.38 - 10~3 m with the flow direction
perpendicular to the disk surface. The volume of this droplets are the same as for a droplet with D = 1-10~3 m.

In Fig. 2 the surface area of the three different initial droplet shapes in dependency of the Fourier number
Fo = at/R3 is displayed, where a, t, Ry are the thermal diffusivity, the time and the radius of the spherical
droplet with the same volume, respectively. For both deformed droplets oscillations can be seen, which were
damped over the time. At Fo = 0.01 nearly the same surface area as a spherical droplet has been reached for
the deformed droplets. The marks in Fig. 2 indicate the Fourier numbers used in Figs. 3 and 4.

In Fig. 3 the temporal evolution of the droplet shape and the temperature field for the initial cylindrical
droplet is shown at different times. Additionally the velocity field around the droplet is displayed. The droplet
shape and the temperature field for an initial disk shaped droplet is displayed in Fig. 4. The figures give an
impression of the evolution of the temperature field due to the deformation of the droplet and due to the flow
field. At F'o = 0 the initial conditions for both shapes can be seen. The disk shaped droplet passed through a
half oscillation period at the next displayed time Fo = 0.00108 to a prolate shape as depicted in Fig. 4b. The
initial cylindrical droplet in 3b is still cylindrical at this time. At Fo = 0.00108 a very interesting difference in
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FIGURE 1: Channel geometry and boundary conditions for a computation of a droplet diameter of D =
1-1073m.

the temperature field can be seen. In Fig. 3b a significant increase in the gas temperature occurs behind the
droplet. But for the initial disk shape droplet (Fig. 4b) the temperature increase is weak. At Fo = 0.00202
in Fig. 3c the initial cylindrical droplet is oscillating from an oblate to a prolate shape short-time after the
largest oblate deformation (see Fig. 2). The temperature distribution behind this droplet is similar to the initial
disk shape in Fig. 4c at the same time, but the temperature is higher for the cylindrical case. The droplet
in Fig. 4c at Fo = 0.00202 is oscillating from prolate to oblate shape (see Fig. 2). The displayed droplet will
immediately reach the largest oblate deformation. As pointed out later, the highest heat transfer occurs during
the oscillation to the oblate shape. Due to the time delay by the heat transport in the gas phase the effect of
the higher heat transfer on the gas temperature is more significant after the droplet passed through the largest
oblate deformation. In Fig. 3¢ it can also be seen, that directly behind the droplet the temperature is lower
than in the vortices in the recirculation zone. This clarifies that after a period of high heat transfer a period of
lower heat transfer is following. Fig. 3d and Fig. 4d at Fo = 0.00337 shows nicely the fully 3D character of the
flow and temperature field.
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FIGURE 2: Surface area A for three different, initial deformed droplets with pur, = 10 - pm,o as a function of
Fo.

As mentioned before, in Fig. 2 the surface area in dependency of Fo is displayed for three different initial
droplet shapes. The initial droplet area of the cylindrical droplet is larger than the surface area of the discoidal
droplet. Nevertheless no difference in the mean Nusselt number evolution in Fig. 5, where the time and spatial
averaged Nusselt number is shown in dependency of Fo, can be seen. In the computation of the Nusselt number
Nu,, the real surface area has been taken into account by computing the heat flux density according to
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FIGURE 3: Velocity field and temperature field around a initial cylindrical droplet with the diameter D =
1-1072 in dependency of Fo.

where A is the real surface area of the deformed droplet, V the droplet volume and the subscripts 0,1 are the
initial and the current state of time ¢ and temperature T'. Therefore, the results from Fig. 2 and Fig. 5 confirm
the heat transfer performance for the discoidal and the cylindrical droplet as seen from Fig. 3b and Fig. 4b. The
heat flux @) which does not contain the larger surface area of the cylindrical droplet, is higher for the cylindrical
case.

In addition averaged Nusselt numbers Nu,, of deformed droplets have been studied. The steep gradient
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FIGURE 4: Velocity field and temperature field around an initial discoidal droplet with the diameter D =
1-1072 in dependency of Fo.

at the beginning of the mean Nusselt number Nu,, evolution in Fig. 5 occurs due to the initial temperature
conditions which lead to an infinite temperature gradient and a resulting infinite Nusselt number. In the further
evolution of Nu,,. The influence of the deformation can be seen from the peaks in the curves of the initial
deformed droplets. The displayed peaks only occur due to the enhanced heat transfer by the motion of the
droplets, because the larger surface area of the deformed droplets has taken into in the computation of the
Nusselt number (see the calculation of the heat flux density, Eq. (8)). A comparison between the Nusselt
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FIGURE 5: Comparison of time and space averaged Nusselt numbers Nu,, for three initial droplet shapes in
dependency of Flo.

number computed with the real surface area and with the surface area of a spherical droplet, is given in [7].
The increase of the Nusselt number for the initial discoidal case at Fo > 0.09 can be attributed to the history
of the discoidal droplet. At this time the interior droplet fluid with a higher temperature is transported to the
droplet surface and the resulting higher temperature gradients lead to a higher Nusselt number. To verify this
behavior more investigations about the fluid motion in the droplet will be performed.

In Fig. 6 the time dependent, spatial averaged Nusselt number Nu; for a initial cylindrical droplet is
displayed in dependency of Fo. As a reference Nu, for a spherical droplet is also shown in Fig. 6. A comparison
with the plot of the surface area of the cylindrical droplet in Fig. 2 shows that the largest peaks occur in the
time period between the spherical to the oblate shape. During this process, the hydrodynamic and the thermal
boundary layer are very thin due to the axial velocity of the droplet motion. The thin boundary layers lead to
steep gradients in the temperature at the droplet surface and therefore, to higher heat transfer rates. The same
behavior can be seen for the discoidal droplet, which is described in [8].
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FIGURE 6: Time dependent Nusselt numbers of an initial cylindrical and spherical droplet with gz, = 10-ps,0
in dependency of Fo .

Concluding Remarks
A 3D CFD program has been used to compute the heat transfer on initial deformed droplets at high
Reynolds number. For the first short period a significant higher heat transfer of the cylindrical droplet in



comparison to the discoidal droplet has been found. A comparison of the temperature fields around a droplet
with a time dependent Nusselt number showed that the highest heat transfer occurs during the oscillation from
spherical to oblate shape. The results for the time and spatial averaged Nusselt number of a disk showed an
increase in Nu,, which is attributed to the change in the internal flow and temperature field. Therefore a
detailed investigation of the internal flow field will be performed in the near future in order to analyze these
effects in more detail.
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