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Abstract
The study presents analytical approaches to modeling droplet deformation and breakup by aerodynamic forces
at moderate relative velocities. Linear Normal Mode Analysis is used to accurately predict the small-amplitude
shape response of a droplet to an aerodynamic surface pressure distribution. To account for variable relative
flow conditions, 46 pressure distributions on spheres are correlated to cover the complete range of subcritical
Reynolds numbers. Large distortions and shape oscillations are described by a nonlinear analysis considering only
a spheroidal mode of deformation. Both concepts provide kinetic equations for deformation parameters, which
are suitable for numerical integration within Lagrangian droplet tracking schemes. The effect of droplet motion
is taken into account by means of a deformation-dependent drag force model. The stability limit is specified as
a critical degree of deformation and is choosen to reproduce experimental data. Irreversible deformation in the
breakup phase and fragment characteristics are not considered in the present paper. To systematically validate the
different models, they are assessed within a matrix of test case computations ranging from free shape oscillations
to deformation of free falling droplets and distortion, propagation and breakup in shock wave and nozzle flows.

Nomenclature
Symbols
cD - Aerodynamic drag coefficient
Cn - Pressure coefficient, mode n
D m Droplet diameter
E - Aspect ratio of droplet
On - Ohnesorge number
p N/m2 Pressure
Pn - Legendre-Polynomial of order n
r m Position, droplet reference frame
R m Droplet radius, undeformed
Re - Reynolds number, flow around droplet
Redef - Reynolds number, flow in droplet
t s Time
T - Nondimensional time
u m/s Velocity, inertial reference frame
v m/s Velocity, droplet reference frame
We - Weber number

y - Nondimensional equator coordinate
α - Displacement of stagnation point
αn - Displacement time-function, mode n
µ Ns/m2 Dynamic viscosity
φ rad Polar angle
Φµ N/(m2s) Dissipation function
ρ kg/m3 Density
σ N/m Surface tension
ω - Nondimensional angular frequency
Indices
∗ Characteristic value
0 Initial/undeformed value
c Critical value
d Droplet/liquid value
n Order of deformation mode
s Surface value
∞ Value far from droplet surface

Introduction
Deformation and breakup of liquid droplets by aerodynamic forces are typical phenomena in many multiphase
flow processes. An important technical application is mixture preparation in liquid-fueled gas turbines, jet-engines,
rocket motors and IC-engines. Modern low-emission combustion concepts often employ some level of secondary
droplet atomization in order to generate a well dispersed and fine fuel spray with good evaporation characteristics.
In solid rocket motors on the other hand, the phenomena can occur with liquid slag droplets in the accelerating
nozzle flow, thus affecting slag deposition in the nozzle region and other operational parameters. Overall, droplet
deformation and particularly breakup have a strong impact on the dispersion characteristics and structure of mul-
tiphase flows by increasing the flow resistance of the droplets and reducing their sizes.

At moderate relative velocities the fundamental mechanism is a distortion of the droplet by the inhomogeneous
pressure distribution on the droplet surface, caused by the external flow. Exceeding a critical intensity, the pressure
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gradient from stagnation points to droplet equator eventually leads to an irreversible expansion flow resulting in
the typical bag breakup phenomena. Non-dimensional parameters characterizing this mechanism are the Weber
number We, specifying the intensity of aerodynamic forces relative to the stabilizing surface tension forces and the
Ohnesorge number On, quantifying the effect of internal viscous forces

We =
ρv2

relD0

σ
, On =

µd
√
ρdD0σ

, Redef =
vrelD0

µd

√
ρ ρd , t∗ =

√

ρd

ρ

D0

vrel
. (1)

The Reynolds number Redef =
√

We/On describes the ratio of inertia forces to viscosity forces in the deformation
flow. The characteristic time t∗ is a measure for the temporal evolution of the process.

It has further been observed that the deformation response depends not only on the relative intensity of the
aerodynamic forces, but also how they are applied to the droplet. Limiting cases are the quasi-steady deformation
resulting from a slow, gradual loading—e.g. a rain droplet accelerating in free fall—in contrast to the highly
dynamic deformation response to sudden shock loading—e.g. a rain droplet captured by a shock front generated
by fast moving aircraft. Slow and sudden are referring both to the characteristic time t∗ of deformation. The
effect of different loading scenarios is reflected in the value of the critical Weber number, which is Wec = 20
(instantaneous value) for gradual and Wec = 13 (initial value) for sudden loading and negligible viscosity effects
[6]. For the latter scenario, distinctive mechanisms of breakup are observed for increasing values of We0: At
We0 = 18 plume breakup and from We0 = 40–80 a gradual transition to shear breakup, a mechanism which is
often described as a detachment of a liquid boundary layer from the droplet equator [6, 1].

In most practical applications the loading scenario is more complex. Flow fields can be highly inhomogeneous
and transient, characterized by turbulence and by large-scale spatial and temporal mean flow variations. Droplet
movement in the flow makes the situation even more complicated. Although on a local scale the flow approaching
the droplet may still be regarded as uniform, the flow conditions continuously change depending on the time and
length scales involved. Thus, to model deformation and breakup within CFD analysis of practical flow fields, these
external factors have to be accounted for in addition to the deformation behavior.

Correlations of experimental data are available for specific configurations, e.g. sudden aerodynamic loading
in shock tubes or wind tunnels [6, 1], gradual loading along nozzle flow and weakly turbulent flows as well as
loading with specific velocity gradients. Due to the time and length scales implied in these experiments, special
care has to be taken when selecting the resulting correlations in a general flow field analysis. Nevertheless, once
checked for applicability, correlations are efficient and robust and have been extensively used in the past [15]. More
versatile in this respect, is the Taylor-Analogy-Breakup (TAB) model. It has been introduced in the frame of CFD
analysis by O’Rourke and Amsden [11]. In this model, the droplet is idealized as a dynamical spring-mass-damper
system described in terms of a single deformation coordinate. The resulting linear kinetic equation can be solved
analytically in the frame of Lagrangian droplet tracking schemes. The effect on the aerodynamic drag force on
the droplet is taken into account by interpolation between the limiting geometries of spherical- and disc-shaped
droplet. The model is widely used in CFD codes, however, the physical idealizations require fitting of several
constants to empirical data. This introduces a certain problem-dependency and in many cases the model fails to
describe important phenomena.

To study large distortions, Ibrahim et al. [7] present the Droplet Deformation and Breakup (DDB) model,
which essentially is a nonlinear formulation of the TAB model equations. However, the necessity of time-resolved
numerical integration seems not to be traded in for an essential improvement in physical accuracy. Thus, the DDB
model has not found wide acceptance. Higher surface modes are taken into account by Normal Mode Analysis.
The analysis has originally been devised by Rayleigh [13] as an exact theory for inviscid, small-amplitude shape
oscillations of a free droplet. Lamb [10] suggested an extension to weakly dissipative fluids, Hinze [4] and
Isshiki [8] later included the effect of an aerodynamic surface pressure distribution and successfully determined a
geometrical criterion for the stability limit. Making use of this theoretical framework, Wiegand [17] formulates
a quasi-steady model for the deformation-dependent aerodynamic drag force on a droplet. Other applications of
Normal Mode Analysis for droplet deformation in gas flows have not been reported. Recently, Direct Numerical
Simulation (DNS) of the internal and external flow fields accounting for the moving interface has been employed
to study individual droplet deformation and breakup. However, due to the massive computational cost involved,
these simulations are not suitable for direct use in spray computations.

The focus in the present paper is the coupled description of droplet propagation and droplet deformation in-
cluding the onset of breakup. In particular the two-way coupling of both processes is accounted for by formulating
a deformation dependent aerodynamic drag force and, on the other hand, using a differential description of the
deformation process allowing for arbitrary variations in the relative flow conditions. The modeling framework is
intended as a basis for a correlative description of the irreversible processes in the breakup phase [15], presented
in combination in a future publication [14].



Normal Mode Analysis
The analysis is based on the fact, that any arbitrary droplet shape can be represented as a superposition of linearly
independent surface eigenmodes, expressed mathematically as a series expansion in spherical harmonics. Consid-
ering axially symmetric deformation of a droplet in a uniform gas stream, the spherical harmonics are reduced to
Legendre Polynomials Pn(cosφ) [2] and the surface polar coordinate rs(t,φ) is determined as follows

rs

R
= 1+

∞
∑

n=0

αnPn(cosφ) . (2)

For small deviations from the spherical shape, exclusive pressure loading of the surface and interior potential
flow, a matching polynomial expansion of the displacement field can be used to develop a series solution of the
Navier-Stokes equations. The resulting second order differential equations describe the deformation kinetics in
terms of the modal displacement functions αn(t). The details of this analysis are reported in Hinze [4], Isshiki
[8] or Schmehl [14]. In the present study, the equations derived by Isshiki—a straightforward extension of the
Rayleigh-Lamb theory—are used in a non-dimensional representation on the time scale T = t/t∗

d2αn

dT 2
+ 8(n−1)(2n+1)

1
Redef

dαn

dT
+ 8n(n−1)(n+2)

1
We
αn = −2nCn , n ≥ 2 . (3)

The equations show, that higher modes are increasingly suppressed and damped out so that only the first modes up
to n ≈ 5 significantly contribute to the deformation. The pressure boundary condition is contained in the expansion
coefficients Cn(t), which are defined as projections of the aerodynamic surface pressure distribution ps(t,φ) onto
the surface modes [2]

ps − p∞
ρ/2 v2

rel

=

∞
∑

n=0

CnPn(cosφ) , Cn =
2n+1

2

∫ π

0

ps − p∞
ρ/2 v2

rel

Pn(cosφ) sinφdφ . (4)

For small deformations, ps(t,φ) can be approximated from the flow past a sphere which—assuming quasi-stationary
behavior with respect to the deformation process—solely depends on the Reynolds number Re(t). Based on 46
individual pressure distributions retrieved from various sources in literature, discrete values of Cn have been com-
puted (see Schmehl [14] for references). The result for the first 4 deformation modes is illustrated in Figure 1. To
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Figure 1: Expansion coefficients of pressure distributions on spheres (left), surface eigenmodes (right)

cover gradual variations of relative flow conditions during the deformation process, the following fitting functions
have been developed

C2 = 0.45 + 0.55 exp(−0.15 Re0.36) ,
C3 = 0.45 − 0.45 exp(−5.2 ·10−2 Re0.63) ,
C4 = 0.17 − 0.17 exp(−3.9 ·10−5 Re1.45) ,
C5 = −0.07 + 0.07 exp(−5.6 ·10−5 Re1.93)

(5)



These correlations are included in Figure 1 and map the complete sub-critical Reynold number range from Oseens
solution (C2 = 1,Re→ 0) throughout Newtons regime of nearly constant cD (Cn ≈ const.,Re & 1000). Assuming
that shear forces on the droplet can be neglected, Equations 3 and 5 constitute a practically complete description
of the linear problem, denoted in the following as Normal Mode (NM) model. Hinze [4] and Isshiki [8] introduce
the concept of a critical stagnation point deformation αc =

∑

nαn = −1 reproducing well droplet breakup at steady
and at sudden aerodynamic loading.

Nonlinear deformation modeling
At larger deformations the forces acting in and on the droplet are no longer independent of the state of deformation.
Nonlinearities are further introduced by increased viscous stresses in the interior flow. Typical deviations from
the linear behavior are mode coupling and shifting oscillation frequencies. Although basically feasible, mode
expansion of the internal flow becomes computationally expensive, particularly in combination with the exterior
problem of flow around a deformed droplet. Thus, as an alternative to mode expansion, the following concept is
based on a presumed shape change via prolate and oblate spheroids. The basic configuration is illustrated in Figure
2. The displacement of the stagnation point and the radial equator coordinate are related by the general kinematic

PSfrag replacements

x1

x2

x3
vrel

α

−α
y

ym

zm
ps,y

ps,z

PSfrag replacements

x1

x2

x3

vrel

α
−α

y

ym

zm

ps,y

ps,z

PSfrag replacements

x1

x2

x3

vrel

α

−α
y

ym

zm
ps,y

ps,z

PSfrag replacements

x1

x2

x3

vrel

α

−α

y

ym

zm

ps,y

ps,z

Figure 2: Reference frame and nondimensional geometry for oblate (left) and prolate spheroid (right)

condition α = 1/y2−1 which reduces to α = 2−2y in the linear limit y→ 1.
Starting point of the analysis is the balance of mechanical energy in the droplet-fixed reference frame

ρd

2
d
dt

∫

V
v2dV + σ

dS
dt
=

∫

S
psvndS −

∫

V
ΦµdV . (6)

Regarding the evaluation of the integral terms, it is important, that the resulting model equation asymptotically
matches the linear theory underlying Equation 3 for the fundamental mode n = 2. Matching is enforced, if neces-
sary, by introducing numerical correction factors.

For spheroids the rate of surface change can be calculated from exact analytical expressions for S . For the
range of deformation considered, the following polynomials are used as an accurate and efficient approximation

σ
dS
dt
= σ

dS
dy

dy
dt
, with

1
S 0

dS
dy
=

{

9.98y3 − 30.34y2 + 33.94y− 13.58 , 0.5 < y < 1 ,
0.67y3 − 4.01y2 + 9.21y− 5.67 , 1 ≤ y < 2.3 .

(7)

The kinetic energy of the deformation is described by the mass coordinates ym and zm characterizing radial (trans-
verse) and axial mass movements in the droplet
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Suggesting a linear combination of the corresponding energy components, the rate of change can be formulated as
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The constant CT enforces matching of nonlinear and linear formulations of the kinetic energy (the rate of energy
change can not be matched due to the quadratic velocity term) at y = 1

CT =
512

15π2+240
≈ 1.32 . (10)



In a similar way, the work performed by the surface pressure is idealized by the surface point coordinates y and
z = 1/y2 characterizing the radial and axial movements of the surface. Assuming a cylindrical shape of the droplet
defined by the corresponding normal surfaces S y = 4πR2/y and S z = 2πR2y2 and using ps,z = ρ/2v2

rel and ps,y =

− f ps,z the rate of surface work can be approximated as

∫

S
psvndS =CWR

[

pyS y
dy
dt
+ pzS z

d
dt

(

1

y2

)]

= −CW
ρv2

rel

2
4πR3(1+ f )

1
y

dy
dt
. (11)

The factor f > −1 quantifies the external pressure drop along the surface. Matching Equation 11 to the linear
theory is enforced by

CW =
2

5(1+ f )
C2 , (12)

formally substituting f by the parameter C2. Although C2 is specified exactly by projecting the surface pressure
distribution to the surface mode n = 2 it is retained as an empirical parameter to fit the deformation response of the
droplet to experimental data.

To calculate the rate of energy dissipation in the droplet, a characteristic value of the dissipation function

Φµ = 2µei jei j , with ei j =
1
2

(

∂vi

∂x j
+
∂v j

∂xi

)

, (13)

has to be determined. Exploiting symmetries and continuity and further approximating the radial velocity gradient
in the droplet (axis: v2 = 0, equator: v2 = dy/dt) gives

∫

V
ΦµdV = 12µd

∫

V

(

∂v2

∂x2

)2

dV = 16πR3µ

(

1
y

dy
dt

)2

. (14)

Recombining the idealized integral contributions, the energy balance of the droplet can be resolved on the time
scale T = t/t∗ and leads to the following kinetic equation

π2+ 16
y6

π2+16

d2y

dT 2
−

48

π2+16

1

y7

(

dy
dT

)2

+
40

Redef

1

y2

dy
dT
+

20
We

1
S 0

dS
dy
=

2C2

y
. (15)

The normalized rate of surface change has to be substituted by the appropriate polynomial approximation given in
Equation 7. To stress the formal similarity to the TAB model, Equation 15 is denoted as nonlinear TAB (NLTAB3)
model. The version number 3 is retained for reference to Schmehl [14], where a detailed study of several model
variants is performed. The linear equation of the TAB model can be derived from Equation 3 by setting n = 2 and
α2 = 2−2y

d2y

dT 2
+

40
Redef

dy
dT
+

64
We

(y−1) = 2C2 (16)

In the original formulation of the model O’Rourke and Amsden [11] suggest C2 = 2/3, which corresponds well
with values of C2 from Figure 1.

Motion of deformed droplets
The effect of deformation on droplet motion can be significant. At maximum distortions typical for the stability
limit, Hsiang and Faeth [6] report an increase of drag forces on the droplet by a factor of 4 for steady and 13 for
shock loading. The experiments further reveal, that drag forces mainly scale with the cross sectional area and the
degree of flattening of the droplet. Since this data is available from the models presented above, a geometry-based
modeling concept is proposed for the aerodynamic drag force.

Assuming that aerodynamic force contributions can be either neglected or formally condensed into the steady
state drag term, the droplets equation of motion is

md
d~ud

dt
=
π

8
D2 ρ cD vrel ~vrel + md~g . (17)

In this equation, the effect of deformation is decomposed into the variation of the frontal area πD2 = πD2
0 y2 of the

droplet and the shape dependence of the drag coefficient cD. Assessing various interpolation schemes for cD, a
linear scheme based on the quantity f = 1−E2 performs best in reproducing experimental drag data for spheroids



(aspect ratio E = 1/y3). Limiting geometries are the spherical shape (E = 1) and the disc shape (E = 0). To account
for variable flow Reynolds numbers the following formulation is used

cD = f cD,sphere + (1− f )cD,disc , (18)

cD,sphere = 0.36+5.48Re−0.573+
24
Re
, Re . 104 , (19)

cD,disk = 1.1+
64
πRe

. (20)

An alternative approach is proposed by Wiegand [17]. Avoiding a time-resolved description, he uses quasi-
steady Normal Mode Analysis of droplet deformation to formulate an additive correction

cD,de f =We
(

0.2319−0.1579logRe+0.047log2 Re−0.0042log3 Re
)

(21)

of the standard drag coefficient cD,sphere. For large accelerations unsteady aerodynamic forces on the droplet can
be significant. At conditions typical for droplet breakup, these can be of the same order of magnitude as the steady
forces. To approximate the effect, Temkin and Kim [16] suggest an additive, acceleration-dependent contribution
to cD,sphere.

Free shape oscillations
At low Weber numbers deformation by aerodynamic forces is less prominent. Yet, shape oscillations originating
from other sources such as primary liquid breakup, droplet-droplet and droplet-wall collisions can still have a
significant effect on the aerodynamic properties of the droplet—this is studied in the last section of this publication.
The limiting case of free oscillations is particularly suitable to investigate the dynamic equilibrium of surface
tension and momentum forces.

Small oscillations including weak viscosity effects are described by linear theory. For small values of We
the time controlling the deformation process is shifting from t∗ to t∗σ = (ρdD3

0/σ)0.5. Transposing Equation 3
to the time scale T = t/t∗σ and solving this equation analytically leads to a non-dimensional damping constant
1/τ= 20 On and an angular frequencyω2 = 64−400 On. In the inviscid case the latter reduces toω0 = 8. For larger
amplitudes or stronger viscosity effects the oscillation behavior increasingly deviates from linear theory. This effect
is demonstrated by the parametric study illustrated in Figure 3. Further testing of several model variants reveals,
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Figure 3: Shape oscillations in the fundamental mode: Frequency shift (left) and asymmetry of periods (right) nor-
malized by ω0 = 8 and ∆Tσ,0 = π/8. Computations based on NLTAB3 model, experimental data from Kowalewski
and Bruhn [9]

that only the simultaneous consideration of nonlinear surface tension and momentum forces, as realized in the
NLTAB3 model, is able to reproduce the nonlinear characteristics. The decrease of ω/ω0 for increasing values of
On at small initial amplitudes α2,0 is a linear effect of viscous energy dissipation. According to ω2 = 64−400 On,
a deviation of ω/ω0 from 0.1% to 1% is attributed to an increase of On from 0.018 to 0.056. This range agrees
well with the value of On = 0.024 Kowalewski and Bruhn [9] suggest as a limit of linear theory. It further agrees
with the onset of dissipation effects on shape oscillations in shock wave flows reported by Hsiang and Faeth [6].



Steady deformation in vertical gas flow
At We & 1 deformation is increasingly governed by aerodynamic forces. For slow variations of relative flow condi-
tions, the shape response of the droplet is quasi-steady. In the limiting case only surface tension and aerodynamic
pressure forces affect the state of deformation (provided that the effect of shear stresses can be neglected). Demon-
strating the ability of the NM model to reconstruct the shape of deformed droplets, computed static deformations
are compared to photographies in Figure 4. It has to be noted, that only deformation is actually computed—relative

Figure 4: Droplets suspended in a vertical gas stream: Predictions based on the NM model (top) and
experiment [12] (bottom). From left to right: D0 [mm] = 8.00,7.35,5.80,5.30,3.45,2.70 and vrel =

9.20,9.20,9.17,9.13,8.46,7.70 and We = 11.1,10.2,8.0,7.3,4.1,2.6

flow conditions are prescribed by the measured values vrel given in the caption. In spite of the underlying linear
theory, shape computations and photographies agree rather well up to large distortions. In Figure 5 (left) the ex-
perimental data is compared to a parametric study of the various modeling approaches. In accordance to Figure
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Figure 5: Steady deformation: vrel prescribed (left) and computed from equation of motion (right)

4 the linear decrease of the aspect ratio suggested by Pruppacher and Beard [12] is well reproduced by the NM
model. However, for small droplets computation and experiment deviate. Possible reasons are an effect of the
neglected aerodynamic shear stresses (Re . 1000) or an accumulation of surface contaminants affecting surface
tension. The influence of the model parameter C2 is depicted for the NLTAB3 model. A value C2 = 2/3, close
to the theoretical value from normal mode expansion of ps(t,φ) leads to deformations similar to the NM model.
For values C2 > 0.7 deformation is increasingly overestimated, in particular for larger droplets. The computations
in Figure 5 (right) take into account simultaneous deformation and motion of the droplet. It is obvious, that the
standard drag for a spherical droplet significantly underestimates the aerodynamic forces on a deformed droplet.
The NM model is able to match the measured terminal velocities up to higher values of We, but fails to predict
the asymptotic behavior for D0 > 6 mm. On the other hand, the quasi-steady deformation correction of cD and the
NLTAB3 model using C2 = 4/3 both overestimate aerodynamic forces. For smaller values of C2 the computed
values of ud,∞ approach the experimental data. Thus, regarding steady state deformation of a droplet a value of
C2 = 2/3 is recommended.



Deformation in shock wave flow
A sudden increase in relative flow velocity results in a dynamic shape response of the droplet. The phenomenon
is of particular importance in many multiphase flow applications including air-assisted atomization. Figure 6
illustrates the dynamic response by a sequence of computed droplet shapes. As a basic rule from linear theory,

vrel

Figure 6: Computed shape response to sudden aerodynamic loading with We = 5,Redef = 666 and Re = 1100 in
time steps of ∆T = 0.3 using the NM model.

maximum deformations from sudden loading are approximately twice as large as the steady values at the same
Weber number (overshoot effect [6]). A quantitative study of maximum transverse distortions is presented in
Figure 7 (left). Droplet motion is not included in these computations—a realistic assumption since the time scale
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Figure 7: Maximum transverse distortions at sub-critical conditions (left), initial dynamic response prior to droplet
breakup, experimental data from Dai and Faeth [1] (right)

of droplet acceleration in shock wave flows is generally larger than the characteristic time of the initial flattening
of the droplet. Most noticeable is a substantial underestimation of the maximum deformation by the NM model
and the NLTAB3 model for C2 = 2/3. However, matching can be enforced by increasing C2. At We ∼ 1 a value of
C2 = 4/3 achieves best agreement with the data. To reproduce the critical transverse distortion ymax = 1.8 of the
droplet observed in experiments at Wec = 13 [6, 1], Figure 7 suggests a value of C2 = 1.

A possible reason for the underestimation of distortion by the steady value of C2 is an additional effect of
unsteady forces on the droplet surface. The effect, which is associated with the significant increase of the aerody-
namic drag force on accelerated droplets [16] is not considered in the present modeling concepts. Comparing the
TAB and NLTAB3 models indicates, that nonlinear effects have only minor influence on maximum distortions.

Regarding droplet breakup at We >Wec, Figure 7 (right) illustrates the temporal evolution of the initial flat-
tening of the droplet. Agreement of experiment and computations is satisfactory and the data shows only a minor
influence of We on the velocity of flattening when normalized by the maximum deformation.

Deformation and deflection in horizontal nozzle flow
Finally, deformation and deflection of water droplets falling in the horizontal jet from a nozzle is studied. The
experimental configuration is explained in detail in Wiegand [17]. Chosen here is his case 17-3W, which is char-
acterized by a high sub-critical Weber number We0 = 11.8 at atmospheric laminar flow conditions. Other initial
values and boundary conditions are given by Re0 = 2414, D0 = 0.546 mm, ux = 36.6 m/s, ud,x,0 = 0.663 m/s and



ud,y,0 = −4.76 m/s. The NLTAB3 model is applied with C2 = 4/3. The experimental data and the results are illus-
trated in Figure 8. As a consequence of the generation process the droplets enter the nozzle flow with significant
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Figure 8: Droplet trajectories deflected in horizontal nozzle flow (left) and trajectory data computed with the
NLTAB3 model (right)

shape oscillations. To demonstrate the influence of these oscillations, trajectories of droplets with different initial
deformations y0 are depicted.

Conclusions
Two different concepts have been developed for the numerical simulation of droplet deformation and breakup by
aerodynamic pressure forces. The NM model is feasible of resolving complex shape dynamics. It is based on linear
Normal Mode Analysis combined with correlations for the pressure boundary condition on the droplet surface. The
NLTAB3 model presumes a deformation of the droplet into prolate and oblate spheroids and incorporates nonlinear
force effects at larger deformations. Both concepts account for modification of the aerodynamic drag forces by
deformation and have been evaluated for multiphase flow scenarios typical for mixture preparation processes.
The computations show, that for We & 1 deformation by aerodynamic forces has an essential effect on droplet
motion and, on the other hand, droplet motion in the flow field affects the deformation process by changing local
flow conditions. For certain cases a quasi-steady formulation of a We-dependent drag coefficient can be sufficient
to reproduce average droplet trajectories. However, even at low We, shape oscillations can arise from initial
distortions influencing the aerodynamic properties of the droplet. It is evident, that the effect of aerodynamic
forces can deviate substantially from the effect of a steady surface pressure distribution assumed in the modeling
concepts. Particularly at high droplet accelerations maximum distortions are underestimated. Although this can be
corrected empirically by adapting model parameters, further research should be conducted on the nature and effect
of aerodynamic forces.
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