
ILASS-Europe-2002 Zaragoza 9-11 September 2002

THE EFFECT OF THE DIAMETER RATIO ON THE
ABSOLUTE AND CONVECTIVE INSTABILITY OF FREE,

COFLOWING JETS
A. Sevilla

�
, C. Martínez-Bazán

�
and J.M. Gordillo

���

asevilla@ing.uc3m.es�
Área de Mecánica de Fluidos, Universidad Carlos III de Madrid.

Avda. de la Universidad 30, 28911, Leganés (Madrid), Spain.���
Grupo de Mecánica de Fluidos, Escuela Superior de Ingenieros de Sevilla.

Camino de los Descubrimientos s/n, 41092, Sevilla, Spain.

Abstract
The spatio-temporal stability analysis of free coaxial jets with finite diamater ratio is performed for the cases of
negligible and non-negligible surface tension effects. A new mode of instability caused by the external shear
layer is exhaustively studied, and transition diagrams between absolute and convective instability are built in a
parameter space including density ratio, diameter ratio, velocity ratio and Weber number. This new mode is shown
to considerably change the stability properties of the equivalent coaxial jet with infinite diameter ratio already
studied in the literature. Preliminary experimental results show agreement with the stability calculations.

Introduction
Coflowing jets are of great relevance in many industrial applications such as atomization and aeration pro-

cesses [1, 2, 3, 4]. The study of drop and bubble formation in this type of systems is crucial to control their size,
velocity and production rate. It is generally accepted that the above mentioned parameters are mainly governed by
the near field instabilities growing close to the nozzle. In recent experiments we have shown that, under certain
conditions, there is a coupling effect between the outer mixing layer, which develops between the outer fluid and
the quiescent environment, and the inner interface. This coupling effect displays the characteristics of globally
unstable systems and, therefore, a region of local absolute instability is expected to exist in the near field [5, 6].

Figure 1: Experimental observations of two different coaxial jet configurations. (a) Air-water jet and, (b) heptane-
water jet.

���
denotes the position of the jet axis.



The photographs shown in Fig. 1 are flow visualizations of well controlled coaxial-jet experiments where an
inner jet is surrounded by an outer submerged water jet discharging upwards into a stagnant water tank. In both
pictures, the outer water jet, seeded with fluoresceine dye, is visualized by the bright portion of the image when the
flow is illuminated with a vertical 5 watts Argon-Ion laser sheet. However, the unseeded stagnant water contained
in the reservoir does not glow and remains dark. The spatially developing outer mixing layer is observed to evolve
due to the growth of the Kelvin–Helmholtz billows caused by the unstable velocity difference. In both images the
outer–nozzle diameter is 3 mm, while the inner–jet diameter is 0.711 mm giving, therefore, a diameter ratio equal
to 4.22. The mean water exit velocity is 2.67 m/s, which corresponds to a water jet Reynolds number ����� 8000.
As can be seen in Fig. 1, under certain conditions there is an important coupling effect between the inner interface
and the outer jet mixing layer. In Fig. 1a, where the inner jet is air, ���	�
�������� ����������� , injected at the same mean
velocity as the outer water jet, ����� �!�"�#�$� %'& m/s, we observe that the development of the Kelvin–Helmholtz
waves is quite regular, and the length of the potential core, denoted by (�) , is considerably reduced compared to
that of the single-phase jet. It may also be observed that the detachment of bubbles from the air ligament is in phase
with the passage of mixing layer vortices. Notice that the two bubbles indicated in Fig. 1a are located nearly at
the same downstream position as the corresponding large, coherent structures. Furthermore, the air-water system
develops the oscillatory behavior of a self-excited system.

A completely different scenario is however depicted in Fig. 1b, where the inner fluid is heptane, ��*'�+� � �,�$� - ,
also injected at the same mean velocity as the water jet, �.*/� � � �0�$� %'& m/s. In this case the spatial evolution
of the outer mixing layer is similar to that commonly observed in the single-phase jet, with a potential core longer
than that observed in the air-water system of Fig. 1a. The inner jet reaches the end of the potential core before
being perturbed and, consequently before being broken. Therefore, unlike the air-water system, which exhibits a
coupling effect between the external mixing layer and the inner air jet, the outer shear layer and the inner interface
are no longer synchronized in the heptane-water system.

These observations have led us to believe that, for some combinations of the control parameters (density ratio,
velocity ratio, etc), a finite diameter ratio may deeply affect the evolution of the jets. If the self-excitation observed
in the case of the air-water jet corresponds to an unstable global mode, local linear instability analysis must reveal
local absolute instability of the coaxial jet flow. This analysis has been performed to compute transition diagrams
between absolute and convective instability as function of the control parameters, i.e. density ratio ( 1 ), diameter
ratio ( 2 ), velocity ratio ( 3 ) and Weber number (We). A hyperbolic-tangent like profile has been chosen for the
calculations. This profile, already used in a number of publications [7], has the advantage of accurately describing
the local flow within the whole potential core of high Reynolds number jets. For the sake of clarity, we have divided
the study in two parts: first, the case with negligible surface tension effects was solved (We 465 ), where the only
cause of inviscid instability is the inflectional velocity profile resulting in a shear-layer type jet instability. Second,
we performed the analysis for finite Weber numbers, where surface tension triggers Rayleigh-type instabilities. We
will neglect gravitational forces by considering that they are much smaller than inertial ones. Furthermore, we will
assume an inviscid evolution of the perturbed field, an aproximation known to be accurate for open, high Reynolds
number flows under consideration.

Description and formulation of the problem
Here, cylindrical coordinates are denoted 798;:=<
:?>A@ , suffices � and � stand for magnitudes associated to the

inner and outer streams respectively, and BDCFE G stands for the perturbed pressure field. The basic flow consists of
an inner jet of radius �HC , velocity ��C and density �$C , and a coflowing outer jet of radius �IG , velocity �JG and
density �'G discharging into a stagnant fluid of the same density (Fig. 2). The unperturbed interface is a cylinder
of radius � C . As previously stated, we will assume the following basic parallel flow, which only depends on the
radial coordinate <

K�L7M<	@N� O�PG Q �SRUT?V	W$XZY C[]\ P^_ PU`/a\ P R \ Pa
b;c;d�e

e O�f � O PG Q �SRUT?V	W$XgY C[ \ f^_ f ` a\ f R \ fa
b�c;d Kh+i � (1)

Following the above equation, the inner and outer shear layers are centered at <j�k��C and <l�m�nG , having
momentum thicknesses op C and op G respectively.

The wavenumber, frequency and azimuthal number of instability modes are respectively denoted by q , r ands . We will use the dimensionless variables t��j<u�
�vC and B$wx�zyB�w��+�$C{� GC :}|�����:~� , as well as the following set of
global parameters: ������C{q (dimensionless wavenumber), ���0r��HC{���NC (dimensionless frequency), 1"����C��+�'G
(density ratio), 3����NG��u��C (velocity ratio), 2l���nG
�
��C (diameter ratio), �l7�t$@/�k��7M<	@;����C (dimensionless
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Figure 2: Scheme of the coaxial jet flow under study.

basic velocity profile),
p C � op C �	� C (inner momentum thickness),

p G � op G �
� C (outer momentum thickness),
We �l� C � GC � C ��� (Weber number).

With the above notation, it is easy to show that the linearized Euler equations can be simplified to the following
eigenvalue problem for the perturbed pressure field:� G B CFE G� t G e�� �t R �!���� 7Mt$@]R� � �� t�� � B CFE G� t R��$� G e s Gt G
	 B C?E G �,�S: (2)

where the basic flow takes the form

�l7Mt$@ ��� G Q �SRUT?V	W$X Y �[ _ P `� � R �� b;c;d ee C � �G Q �SR T~VuW$XgY C[ _ f ` t�R C� b�c;d � (3)

The boundary conditions are � t��,� B C��� 5t�465 B G 4 �S: (4)

and

t��#��� � BACS��B;G e We � C 7�� G e s G RL��@MB�� C �$7��]���.R� @ GB�� C �,1AB��G � (5)

where �� is the value of axial velocity at the interface, and a prime denotes differentiation with respect to t .
The numerical procedure used to solve the eigenvalue problem (2)–(5) is based on a shooting method com-

bined with a Newton-Raphson iterative scheme for fast convergence. We start integrating Eq. (2) from both
a point near the axis and a point far from the central line where the mixing layers have already relaxed to an
almost uniform profile. The values of pressure perturbation at these points are estimated using the asymptotic
expression of Eq. (2) for uniform profiles, and we impose the linear dependence of the inner and the outer solu-
tions at some point between the interface and the mixing layer. This condition provides an equation of the form� 7���:=��� s : p C : p G : 2�:~1!: 3�@H�z� , which constitutes the dispersion relation to be satisfied in order to obtain non-
trivial solutions. To locate points of zero group velocity,

� � � � ���9����� � � , the two simultaneous equations to
satisfy are � � �}����:=��� � s : p C
: p G	:~2;:?1]: 3!�x�j�" �" � � � � :=� � � s : p C+: p G	: 2�:?1]: 3 � �j��� (6)

The first expression in Eq. (6) is the dispersion relation, and the second equation represents one of the forms to
express the nullity of the complex group velocity, i.e., the existence of a saddle-point in the complex wavenumber
plane 79� –plane @ . The values of wavenumber and frequency at the saddlepoint, �9����:=�#�$� , are generally called
absolute wavenumber and absolute frequency respectively.

Results for the limit We 4m5
In the case of negligible surface tension effects, two relevant instability modes have been identified, namely, PI

associated to the inner shear layer, and PII associated to the outer one. The PI mode, commonly known as the light
jet or hot jet mode, has been extensively investigated in the past in the 2 4 5 limit [8, 9, 10, 11, 12, 13]. Earlier
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Figure 3: (a) Level curves ����� const. in the � –plane showing pinch-point PI, associated with the inner mixing
layer. s � ��: p C �z�$� �u%$: p G �z�$� � � :�1�� �u:�30�z�$����:$2 �z� . (b) Same as Fig. 3a showing pinch-point PII,
associated with the outer mixing layer. s �l��: p CS�j��� ��%$: p Gx�j��� � � :$1�����:$3��l��� �$:$2�� � .
results obtained for the light–jet configuration [8, 10, 12], which in this study corresponds to the limit 24 5 ,
show a transition to absolute instability in the s �0� mode when the inner stream is sufficiently lighter than the
outer one, and the outer coflow is slow enough. Figures 3a and 3b show the pinch–points, hereafter named PI and
PII, associated respectively to modes PI and PII for the following values of the dimensionless control parameters:s ����: p C����$� �u%$: p Gv����� � � :$1L� �u:�3j����� �$:�2/�#� . The numbers shown on the spatial branches correspond
to the values of the imaginary part of � . It is clearly observed that the branch-exchange process fulfills the Briggs–
Bers criterion. Pinch–points PI and PII can be naturally assigned to the inner and the outer shear layers respectively.
Since PI is the mode associated with the inner shear layer, it is the only mode present for large values of 2 . This
mode has already been described in the literature, whereas mode PII, was first analyzed by Sevilla et al. [6]. The
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Figure 4: We 465 transition diagram in the � - 1 plane for several values of 2 , where � �#7=�!R 3�@ �$7 � e 3.@ . Here�
represents the air-water jet of Fig. 1a, and � represents the heptane-water jet of Fig. 1b.

transition diagram of Fig. 4 shows that, for a given value of 2 , there are two different curves which correspond
to modes PI and PII respectively. This pair of curves divides the � - 1 parameter plane into several C/A unstable
regions. Notice that in this diagram the C/A transition can be triggered by either modes PI or PII. The curves with
solid symbols indicate the C/A transition line caused by mode PII while the curves with open symbols display
the C/A transition promoted by mode PI. Let us classify the regions presented in Fig. 4. For values of 1��#�$� &
the flow is always convectively unstable, independently of the values of � and 2 . The C/A transition controlled
by mode PI is only possible for sufficiently large values of � , �
	��$����& . Furthermore, our study reveals that, in
practical applications where 2 is finite ( 2�� ��� ), the system may exhibit an absolute instability caused by mode
PII. Observe that there exists an optimum value of the coflow parameter, �� ��� � , nearly independent of 2 , for
which the system becomes absolutely unstable due to the effect of mode PII.



The point corresponding to the air-water jet is represented by
�

while the point associated with the heptane-
water jet is indicated by � . It may be observed that the present investigation qualitatively corroborates the C/A
nature of both systems. The analysis presented here shows a convectively unstable flow for the heptane-water jet
( 1 =0.8), while it predicts an absolute instability for the air-water jet ( 1 =1.2 � 10 ��� ). These results are apparent
in Fig. 4 where it is observed that the air-water jet, indicated by

�
, is within the absolutely unstable region of the2 � � � �u� transition curve, while the heptane-water jet, � , falls inside the convectively unstable zone. Therefore,

the effect of the diameter ratio is more noticeable in the lighter, air-water configuration, triggering the absolute
instability. However, at this point we cannot extract any quantitative conclusion for the finite surface tension
situations shown in Fig. 1. This point will be addressed in the following section.

Results for finite Weber numbers
For finite Weber numbers a new instability mode caused by surface tension effects, hereafter named PC, is

present in the flow. Figure 5a shows the We- 2 transition diagram for an air-water coflowing jet. In this figure, it can
be observed that, as the Weber number tends to infinity, the results of the previous section are recovered: mode PII
is convectively unstable for 2 � � and absolutely unstable otherwise. The transition from convective to absolute
instability is dominated by this inertial mode for low values of 2 .
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Figure 5: (a) Transition diagram in the We- 2 plane for the air-water jet ( 1 �j��� ���$�+� ) with no shear at the interface
( 3���� ). (b) We �#��� , transition diagram in the � - 1 plane for several values of 2 . Here

�
represents the air-water

jet of Fig. 1a, and � represents the heptane-water jet of Fig. 1b.

Moreover, as 2 is increased, the transition of the PII mode occurs at lower values of We, until a value of 2
where PII and PC transition curves cross is reached, 2 ) �j-�� . For values of 2 larger than 2 ) , the capillary mode PC
becomes the dominant one, indicating that the transition is driven by surface tension effects. In the limit 2 4 5 ,
the transitional Weber number of the air-water capillar jet without shear is recovered, We �,�$� � � .

Figure 5b shows the � - 1 transition diagram for We �#��� . The reason why there is no transition curve associ-
ated to PC is that, for this value of the Weber number is high enough for the mode PC to be always convectively
unstable independently of the values of the diameter and velocity ratios. Nonetheless, there are some quantitative
differences between Figs. 4 and 5b: the minimum density ratio for the system to be convectively unstable for any
value of � is larger in the case We � ��� , reaching a value of almost unity. Furthermore, it can be observed that
all the transition curves move to the right of the diagram, i.e. to larger values of density ratio. These observations
indicate that surface tension promotes the self-excited behaviour of PI and PII modes. For lower values of We, a
completely different transitional scenario, currently under study, appears in the coaxial-jet flow.

Conclusions
We have discussed the influence of the outer shear layer on the instability characteristics of finite diameter

ratio coaxial jets by computing the spatio-temporal response of the flow. Finite diameter ratios profoundly affect
the non-stationary development of the flow, leading to predictions qualitatively and quantitatively different from



infinite-coflow studies. This may be relevant for a better control of coaxial-jet near-field dynamics, and thus for a
better control of atomization and mixing processes.

In the limit We 4 5 , a new region of absolute instability, caused by the effect of the external mixing layer,
has been described in the present work. Such a region is always present in practical situations, since coflowing jets
necessarily have a finite diameter ratio, commonly smaller than 10. The main features extracted from the study of
the limit We 4 5 are shown in figure 4: the Kelvin–Helmholtz-like mode PII, caused by the outer shear layer,
becomes absolutely unstable for low enough density ratios and intermediate velocity ratios. These facts lead to the
appearance of new absolutely unstable regions in the � - 1 parameter plane, which may be of relevance for control
of coaxial-jet break-up and mixing.

In situations where surface tension effects cannot be neglected (i.e. low enough Weber numbers), the outer
shear layer has a pronounced influence on the system. In the case of an air-water system without shear at the
interface, we have seen that the nature of the instability is controlled by the inertial effects of the outer layer for
values of the diameter ratio smaller than �-u� , being surface tension effects the dominant influence otherwise. A
detailed computation of the � - 1 transition diagram for We ����� shows the same qualitative behaviour than the
equivalent We 465 case, indicating that values of We

� ��� surface tension effects become almost negligible.
It has been shown that experiments qualitatively corroborate the results extracted from the stability computa-

tions. In order to evaluate their quantitative accuracy, a detailed experimental study, including measurements of
frequencies, wavelenths and growth rates is needed, and will be the subject of future work.
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