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Abstract 
Breakup of attenuating lamella is most often initiated by aerodynamic waves. At relatively low Weber numbers 
instability due to long waves is dominant. At higher Weber numbers short waves occur according to Senecal et 
al. with a wave growth rate independent of the sheet thickness. The authors presented their results as a CPU 
model for fast moving sheets to predict mean droplet sizes. Here, their equations are transformed into a non 
dimensional π-number relationship allowing for a parametric study valid in the general case. Drop sizes were 
measured with PDA and compared with theoretical predictions. Despite of fairly satisfactory correlations 
between experiment and theory questions about the breakup process still exist. 

 
Introduction 

Amplitudes of aerodynamic waves show exponential growth along streamlines. The pressure drop in the 
gas environment at convex contours of the waves increases at stronger deformations like at airfoils. After a 
certain running length the lamella will break. One can observe fragmentation at sufficient amplitudes and the 
formation of threads from the fragments due to rim contraction of these fragments. Finally break up of the 
threads into droplets takes place due to Rayleigh instability.  

Amplitude, Wavelength and growth rates of these sinusoidal waves have been examined by a linear 
stability theory. First results have been reported by Squire [1] for lamella of constant thickness und Dombrowski 
et al. [2] for attenuating lamella. Viscous lamella have been treated in [3]. Long waves of liquids with negligible 
viscosity have a wave length of  λ� = 4πσ/ρgv

2. In this regime it is assumed that two threads are formed from one 
wave during disruption of the lamella fragments.  

In a new analysis reported by Senecal et. al. [4], it is was found that short waves appear at high lamella 
velocities, have higher growth rates and a higher probability to form droplets.  The onset of this regime can be 
more closely described for non viscous liquids as 
 
   We2 κ ρ∗5/2  > 18,2.      (1) 
  

In Eq. (1) the Weber number is defined as We = v2dρ/σ,  v is the velocity of the lamella, d is the nozzle 
diameter. The sheet number is defined for a hyperbolic layer decay as in [5] by κ = 4δx/πd2 and x is the running 
length along a streamline, δ is the lamella thickness at x,  ρ∗ =(ρg/ρ) is the ratio of densities from gas to liquid. 
 
Growth Rate of Shor t Waves 

The dispersion relation in [4] can also be presented in a non dimensional form: 
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Defining the following numbers Rek= Wek/Ca and Wekg = Wek (ρg/ρ),  and by means of the Capillary 

number Ca = vη/σ  the growth rate  is 
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When Wek =ρ v2/σ�

�
  is a wave Weber number containing the wave number k = 2π/λ.  Wek may be defined 

either with the liquid ρ or gas density ρg  as Wekg. 



Fig. 1 shows the non dimensional growth rate of short waves depending on the wave Weber number and 
the capillary number , calculated by Eq. (3). 
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Fig. 1. Non dimensional growth rate of short waves depending on the wave Weber number, the Capillary 
number and the density ratio, calc. by Eq.(3). The largest growth rate is found at highest gas densities. The 
values of ρ* are only indicated at the curves for Ca = 0. 
 

The wavelength of short waves for the non-viscous case is given by λ = 3 πσ /ρgv
2. In this regime it does 

not depend on the sheet thickness δ. 
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Fig. 2. Maximum Growth rate of short waves depending  Fig. 3. Gas wave Weber number at 
on the density ratio and Capillary number    maximum growth rates.  
     



The non-dimensional maximum growth rate and the according wave Weber number and their dependence 
on the density ratio and capillary number can be calculated by an infinitesimal calculation for the general case. 
Results are given in Figs. 2 and 3. The maximum growth rate decreases with increasing viscosity or capillary 
number resp. Simultaneously the wave Weber number belonging to this maximum increases, i.e. the wave length 
becomes larger. 
 
Drop Sizes 

It is assumed that only one ligament is formed per wave in the short wave regime. It is also assumed that 
only waves with maximum growth rate lead to breakup. Now the ligament diameters and the according drop 
diameters D can be calculated. In literature, for break up the amplitude term is set to ln(AZ/A0) = 12. Even though 
the size of the initial disturbance A0 is unknown this break up criterion is needed for determination of the sheet 
thickness at the point of break up.  

In describing the geometry of attenuating sheets, the sheet number κ = CD/[2π ϕ sin (θ/2)] at swirl nozzles 
is obtained from the discharge coefficient CD and the spray cone angle θ as in [5]. The sheet number is 
determined by the geometry of the nozzle and the Reynolds number of the flow. Depending on the spray angle, 
e.g. at swirl nozzles, the lamella numbers lies in the range 0,05 < κ < 0,2, at fan jet nozzles it lies in the range of 
0,3 < κ < 0,8. Geometrically similar nozzles produce lamella with the same sheet numbers independent on their 
size. 

κ allows for a uniform presentation of the dispersion equations for long and short waves as well as a 
correlation of the drop sizes with the nozzle diameter. For long waves the well known related drop size for low 
viscous liquids is 

 
                    D/d = 1,67 κ 1/3 We-1/3 ρ∗  -1/6 .                    (4) 
 

When short waves lead to break up at higher Weber numbers, more accurately when Eq. (1) holds, and 
when the viscosity is low, the drop size is given as 
 
                    D/d = 1,03 κ 1/2 ρ∗ 1/4.                                    (5) 
 

It is interesting to see that from a certain Weber number on the drop size should no longer depend on the 
sheet velocity or Weber number. The same is true for the pressure dependence of the drop sizes. Theoretical 
results for short and long wave break up are shown in Fig. 4. According to this plot at a given sheet number and 
density ratio the drop sizes should decrease first with increasing pressure or sheet velocity but then are predicted 
to be constant. 
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Fig. 4. Related drop diameters from breakup of attenuating sheets due to long and short aerodynamic waves 
depending on the nozzle Weber number. At a certain limiting Weber number the drop size does not decrease 
further with increasing Weber numbers. 

 



The plateau like course of the drop sizes has sometimes also been observed in experiments, e.g. at [6]. Even 
so the drop size is expected to remain constant from a certain Weber number on, one has to consider other flow 
regimes, i.e. turbulent breakup at even higher Weber numbers or higher sheet Reynolds numbers. Then the 
assumed break up regime does not hold further. Further calculations indicated very littl e influence of the liquid 
viscosity on the drop size in the short wave regime at ρ* = ρg/ρ = 1,2.10-3, see e.g. [7]. 

At typical lamella forming nozzles such as swirl nozzles, the Weber number is not a well known parameter 
in technical applications. In contrary the pressure, the flow rate and the spray cone angle can be obtained without 
great difficulties. A comparison between calculated and measured drop sizes therefore is presented by means of 
the Laplace number ∆p* = ∆pd/σ  instead of the Weber number. To perform the calculation with the long and 
short wave model it is necessary to know the course of the velocity coefficient ϕ = v/u, and of the sheet number 
κ on the Reynolds number. This may be taken from measurements at geometrically similar larger nozzles, e.g. 
from [8] obtained with the e-PIV1) method. In order to stay with just one characteristic geometrical dimension, 
the Reynolds number is defined solely by well known parameters, i.e., the nozzle diameter, the pressure and the 
liquid properties. The flow within the nozzle is known to be practically independent on the gas density and the 
capill ary pressure. Fig. 5. shows the discharge coefficient, the velocity coefficient and the sheet number vs. the 
pressure Reynolds number at a swirl nozzle. The geometry was optimized according to [9] with a short orifice 
length of l = 0.2 mm. The nozzle Diameter was d = 1,03 mm, the cone angle of the spin chamber was 60°, there 
were two tangential inlet slots with a width of 0.5 mm and a height of 0.8 mm. 
 

For a swirl nozzle with the given geometry, the sheet number reaches κ = 0,07 at Rep > 50.000 , below that 
limit there is a strong dependence on Rep. The discharge coefficient was obtained at the 1 mm nozzle within the 
pressure range of 3 < ∆p < 25 bar with water and glycerol water mixtures. It hardly exceeds ϕ = 0.8 even for 
high Reynolds numbers, Rep > 50.000  resp. 

 
Fig. 5. Sheet number, velocity coefficient and discharge coeff icient at a swirl nozzle with a geometry as 
described in the text. The Reynolds number is defined with easy accessible parameters. 

 
 
Based on the given liquid properties the drop sizes were calculated for the two breakup regimes. 

Measurements of drop sizes in the spray were performed with a TSI PDA. For water with Oh = 0,0038, the 
droplet data appear to fit more closely to the short wave theory even at low pressures. In the case of a water 
glycerol mixture with µ = 3,48 m Pas and Oh = 0,0136 the droplet data obtained with the PDA indicate a 
satisfactory fit to the calculated long wave results as predicted by the theory.  

Besides turbulence there are other remarkable theories, explaining waves on the sheet e.g. as a propagation 
of oscill ations generated at the air core as gravity or centrifugal waves [10]. Further experimental examinations 
of the wave pattern on the sheets are needed to give a better insight into the break up process. 
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Fig. 6. Related drop sizes at a swirl nozzle with d = 1,03 mm orifice diameter. For water, Oh = 0,0038, drop 
sizes are more accurately described by the short wave computations even in the case of  low pressures. For a 
water glycerol mixture, Oh = 0,0136, within the low pressure range, the drop sizes are predicted better by the 
long wave theory as expected.  
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Nomenclature 
  
d    nozzle diameter                    ∆p* =  ∆pd/σ         Laplace number 
D    mean drop diameter   κ = CD/[2π ϕ sin (θ/2)]   sheet number 
k = 2π/λ   wave number   Ca = vµ/σ             capill ary number 
V    volumetric flow rate  CD = 4V/πd2u   discharge coefficient  
v     sheet velocity    Wek = v2ρ/kσ    wave Weber number  
u = (2∆p/ρ)1/2  Bernoulli velocity   Wekg = v2ρ � /kσ    gas wave Weber number  
x   running length   Rep  = d(∆pρ)1/2/µ  pressure Reynolds number 
ϕ = v

�����
  velocity coefficient 

δ   sheet thickness   Ω  = ωσ/v3ρg  non dim. growth rate (1) 
λ          wave length   Ω∗ = (ωσ/v3ρg)/ρ*  ½ non dim. growth rate (2) 
ρ        liquid density         Oh = µ/(ρdσ)1/2    nozzle Ohnesorge number 
ρg      gas density   We = v2dρ/σ         nozzle Weber number 
σ      surface tension   ρ* = ρg/ρ              density ratio 
µ      liquid viscosity   
θ     spray cone angle    
ω    growth rate of ampli tudes 
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