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Abstract

The Eulerian-Eulerian approach proposed by Beck [1] is used here to study the phenomena of a spray impinging
on a wall. The basic fluid dynamics of an impinging spray can be simulated with this approach once the
appropriate wall boundary conditions have been imposed. However, near the wall, the SMD and the velocity
component normal to the wall are not simulated appropriately. Hence a compatible wall impaction model has
been developed to take into account the different outcomes that a droplet can undergo after impaction on a wall
(deposition, rebound and splash), and to correct the size and velocity distributions in the near wall region. This
paper considers the theory of the spray wall impaction model and presents some preliminary results.

Introduction

The method of modelling sprays using the moments of the droplet number size distribution was first
introduced by Beck and Watkins[2]. This method does not require the discretisation of dropletsinto size classes
to capture the polydisperse nature of a spray flow. Instead, it solves both the liquid and the gaseous phases in an
Eulerian manner [3]. In this way, the liquid phase is considered as a coherent whole and its properties are written
in terms of the first four moments of its number size distribution function. The third and fourth moments are
calculated using transport equations, and the other two are approximated from a presumed distribution function.
Because the size distribution is different along the spray, the size distribution function is truncated in order to fit
the SMR obtained with the transport equations of the third and fourth moments.

This model is capable of predicting a basic wall spray, once the appropriate wall boundary conditions have
been imposed. However, this does not take into account important effects that occur in areal spray, namely the
deposition, rebound or break-up of droplets and the associated effects on the drop velocities. The modelling
scheme of Beck and Watkins gives much information about the size distribution of the droplets in each
computational cell. Hence it is possible to build a statistical wall impaction model capable of predicting the
amount of liquid, within each near wall computational cell, that isinvolved in each one of the impaction regimes
(i.e. deposition, rebound and splash). The effects on the number size distribution moments of the liquid can then
be calculated, along with the associated velocity components. Thus much information about the spray after
impaction is available, at least matching that obtained by Lagrangian spray wall impaction models used in DDM
schemes.

Mathematical M odel
The present impaction model uses the droplet number size distribution proposed by Beck [3] to predict the
amount of liquid within a computational cell that lies in each of the impaction regimes. The distribution
proposed by Beck is:
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wherer is the drop radius, and ra; is the local Sauter Mean Radius (SMR) of the spray. This distribution may be
truncated at either end as discussed above.

It is necessary to choose a dimensionless parameter, a function of the size and velocity of the impinging
droplets, which will provide a criterion for the outcome of an impinging droplet. Mundo et. al. [4] proposed the
following number:
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This number is very convenient because it has successfully predicted the splashing limit and also there is
some information about the outgoing droplet size distribution based on the k number of the impinging droplet. It
is important to note that, depending on the type of experimental data available, the model could be built using
other dimensionlessnumbers like the Weber and Laplacenumbers.

In this sheme, all properties of the liquid (density, viscosity, surface tension and velocity) within a
computational cdl are the same for all the droplets. Hence, from equations (1) and (2), it is possble to producea
‘k density distribution’, g(k):
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Thisis done by writing r as a function of k (and the rest of the parameters) in equation (2) and making a change
of variablein equation (1) fromr to k.

Having this distribution one can cdculate the fradion of droplets, wf; that are included in eat of the
impinging regimes as foll ows:
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The integration limits kp and ks refer to liquid charaderistic transition numbers of depaosition and splash
respedively. Mundo et. al. [4] report that the splashing limit is ke=57.7. But there is no information about the
depasition limit, hence, in the present work, it has been assumed as ky=15.

At the present stage of the modelling, the deposited volume fradion is being ‘removed’ from the total
volume of liquid in the cdl. In the future it will be used to predict a wet film. This amount of liquid is
represented in the moment equations by the sink terms SQip:

RNip = WiprQ, (8)

where the subscript i denotes the moment number (i = 0, 1, 2, 3), and the Q; are the number size distribution
moments.

For the rebound fradion all moments of the spray remain constant, since there ae no changes to the drop
sizes; only the velocity component of the liquid normal to the wall in the cell alters. Lee and Ryou [5]
successfully predicted this velocity with the correlations proposed by Matsumoto and Saito [6] and using the
coefficient of restitution, e, reported by Bai and Gosman [7]:
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Here u, is the velocity component normal to the wall after the impad and v is the relative velocity between the
fourth moment or volume averaged velocity of the impinging droplet and the wall velocity; it is defined as v=Us-
Uuai- Also 8 isthe angle of impadion formed between the wall and the incoming velocity vedor.

Both outgoing moment-averaged velocities required in the model (i.e. Us and U,) are considered to be the
same and equal to u,. The liquid velocity components parallel to the wall are cdculated by the liquid phase
continuity equations oncethe gpropriate wall boundary conditi ons have been set.

The splashing regime is modelled through source terms for each moment Q;. In fact, only the source terms
for Q,, Q; and Q, have to be cadculated since the volume of liquid, represented by Qs, is arealy known through
equation (7) after the splash.

In order to cdculate the source terms SQ;s a droplet size distribution of the outgoing doplets is necessary.
Mundo et. al. [4] report a set of data for a dimensionless droplet size distribution of secondary droplets for



different k numbers, for both smooth and rough surfaces. The present model has been developed using the
dataset obtained with a smooth surface.

This experimental data was fitted into a function m(k,r’) to generate a surface that interpolates between the
lines reported by the experiments. The function is as follows:
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Thisfunctionisillustrated in Figure 1 and comparisons between it and the experimental data are shown in Figure
2. Clearly thefit is very good except for the datafor k = 162.
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Figure 1. Surface of the size density function of secondary droplets m(k,r).
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Figure 2. Comparisons between m(k,r’) and the experimental data of Mundo et al [4].




To obtain the moments of the secondary droplets one needs an expression involving the density function
m(k,r’), which would give a number distribution. This expression, d(k,v), is a function of k and the relative
velocity of the liquid phase in the computational cell and the wall. The deduction of this expression is based on
the fact that the volume of splashing liquid is equal to the volume of liquid after the splashing takes place.
Suppose that one has aincoming splashing droplet with k=k;, v=v; and r=r;,,, then it can be shown that,
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For given values of k and v the value of r;, for each drop can be calculated from equation (2). This is then
inserted into equation (15). Values of d(k,v) can then be obtained. These are shown in Figure 3 for different pairs
of k and v values. The equation obtained to fit this datais:

d(k,v) = (0.5157v> + 37.42v + 870.56)k >+ (16)

and thisisaso shown in Figure 3.
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Figure 3. Comparisons between the calculation of d(k,v) from equations (15) and (16).

The general form to calcul ate the source term for the i dimensionless moment of the secondary dropletsis:
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From dimensional considerations the dimensional sourceterm is;
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The final moments within a computational cell are calculated as:

Q =N +QM(Wy)  1=(0,1,2)
Q; = Q9 - (19)

According to the experimental data of Mundo et. a. [4] the mean velocity of the secondary droplets is
approximately -0.25 of the incoming velocity. Hence, the present model calculates the velocity of the secondary
droplets as follows:
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The final moment-averaged velocities of the droplets within a computational cell are calculated as a weighted
average velocity between the rebound and the splashing velocities.

u, =uz; =Cu, +(1-C)ugg (21)
where
wf
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Results

Figures 4(a), 4(b) and 5 show how the model works. The input is a set of data that varies in order to obtain
the different possible outcomes in an impinging spray. However, it should be noted that the functional forms for
a, b and a given in equation (12) are not appropriate for values of k outside the range of data used to develop
these equations (k = 133 to 186), because the values of b and a become negative. For values of k outside this
range the values of m(k,r’) are set to the appropriate end-of-range val ue.
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Figured. (a) Fraction of droplets undergoing deposition, bouncing or splash. (b) SMR of the liquid phase.




It can be seen that near the axis of symmetry (denoted by low values of cell humber) mainly splashing and
rebound takes place and the SMR decreases substantially. Further from the axis, mainly rebound and deposition
take place and the outgoing SMR starts to increase in value. When no splashing occurs, the outgoing SMR
matches the incoming one because no break-up occurs. Even further away from the axis only deposition takes
place and the SMR drops down to zero because there are no longer any dropletsin the cell.

The velocity outcome shows a trend of smaller outgoing velocity with smaller incoming velocity, as would
be expected. A fairly flat trend can be observed in the region where the splashing regime is more important. As
the number of splashing droplets diminishes the outgoing velocity tends to zero more rapidly.
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Figure5. Volume-averaged velocity of the liquid phase versus distance from the axis of symmetry.

Conclusions

The new spray wall impingement model presented here is capable of predicting a new size distribution of
the spray in the near wall region. At the present stage, because m(k,r’) is a Poisson distribution of variable
exponent, a, the integration is being done numerically. This makes the model computational expensive; hence
further work will be focused on obtaining a function that can be integrated analytically but that is still capable of
delivering good results. Nevertheless, the model has proved to be efficient in predicting the different fractions of
liquid volume coming from each impingement regime, and the SMRs and normal velocities obtained after
impingement showed trends that appear sensible.

It is a'so necessary to obtain more statistical data about the size distribution of secondary droplets to make
m(k,r’) a more robust function capable of being widely used. Another assumption of the present work is the
value used for kp (15.0), which is currently just guessed in order to test the performance of the model.
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