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Abstract

A spray impacting onto a wall creates on it a moving, oscillating liquid film. In the present paper the
parameters of the single drop impact and those of the impinging spray influencing the dynamics of this
film are determined. Next, the statistically averaged fluctuations in the motion of the film at short times
after drop impact are considered, such that the dynamic pressure applied by the spray can no longer be
considered as continuous. This motion causes the formation of finger-like jets, as observed in experiments
of a diesel spray impacting onto a rigid wall.

Introduction

The usual approach to the modelling of spray impact treats the phenomenon as a simple superposition
of single drop impact events [1]. Such models result from either experimental [2, 3] or theoretical [4] studies
of the impact of a single drop onto a dry wall, onto a uniform, undisturbed liquid film or into a deep pool
[5]. One important result of these studies is the splashing threshold in terms of the impact parameters,
which may differ, depending on the mode of splash. One empirical condition found for a splash after the
crown-like uprising of jets is when the thickness of the film and the drop diameter are of the same order of
magnitude [6]: We4/5Re2/5 ≥ 2800, whereas the condition for a drop ejected from the central jet formed
after the crater created by the impacted drop recedes is [5]: We ≥ 48.3 Fr0.247, where We = ρDU2/σ
is the Weber number, Re = DU/ν is the Reynolds number and Fr = U 2/(gD) is the Froude number; ρ,
σ, ν being the density, surface tension and the kinematic viscosity of the liquid, D and U being the drop
initial diameter and the impact velocity.

However, the spray impact phenomenon is much more complicated. In [6] it was shown that this
conventional approach is not universal in the description of the spray impact and that in the case of
relatively dense sprays, the interaction of crowns and the oscillations of the liquid-wall film must be taken
into account. In Fig. 1 the impact of a diesel spray onto an inclined, cylindrical target is shown. In this
picture the spray impact results in the creation of numerous uprising finger-like jets on the wall. In only
one of 300 such pictures is a crown present. Measurements performed using the phase Doppler technique
indicate that secondary droplets are ejected from the wall. The average drop diameter in the impinging
spray was D ∼ 10 µm, the impact velocity U ∼ 40 m/s, and the volume flux density approximately
q̇ ∼ 0.1 m/s. These parameters are far below either of the above-mentioned splash conditions. Therefore,
the motion of the film and its oscillations appear to influence significantly the drop impact process and
apparently can enhance the splash.

The main subject of the present work is the theoretical description of the behavior of the liquid film
created on a wall by a spray at very short times after impact of a single drop and the creation of finger-like
jets.

Single drop impact

Consider first the normal impact of a single drop with the impact velocity U and the initial diameter
D, onto a thin liquid stationary film of the thickness hf . If the impact velocity is relatively high, the
impact produces a crown-like jet. Following the theory of [4], the base of the crown is of radius Rcr(t),
which is described as the propagation of a kinematic instability in the film, dividing it into two parts:
an outer undisturbed film and an inner part of thickness h(r, t), consisting of radially moving liquid with
the velocity V (r, t).

Let us introduce two parameters of the single drop impact important for the characterization of a
polydisperse spray impact:

S =

Tm
∫

0

πR2
cr(t) dt, (1)



Figure 1. Image of the diesel spray impacting
onto an inclined target. The uprising finger-like

jets can be clearly seen.
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Figure 2. Schematic representation of the film
created on the wall.

Y = ρ

Tm
∫

0

Rcr
∫

0

2π
∫

0

r h (V ⊗ V ) dθdrdt, (2)

where symbol ⊗ denotes the usual tensor product. The first parameter is associated with the presence of
the crown in a space/time volume and the second one with the axial momentum of the flow in the film
produced by the drop impact. The upper bound in the time integration, Tm, is the maximum time of the
crown propagation corresponding to the instant when the free rim bounding the crown falls down onto
the film. This time is usually much larger than the characteristic time of drop impact.

The integrals in expressions (1) and (2) can be evaluated using the remote asymptotic solution of [4].
Approximating the results for Tm � D/U yields the expressions for the parameter S(D,U, hf ) and the
tensor Y (D,U, hf ) in the following form

S = πD3/2U T 2
m h−1

f /6, Y = Y I, (3)

where
Y = πρD4 U/36

[

1 +
√

2/3 D1/2 h
−1/2

f

]

, (4)

and I is the two dimensional identity tensor in the plane parallel to the wall.

Characterization of a spray

Consider first the spray as continuous in space and denote with cn(x, t) the number concentration
of the spray at point x, and f(x, t,v, D) as the local probability density function. Let us introduce for
convenience a functional = defined as

={a} =

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∞
∫

0

a(x, t,v, D) dDdvxdvydvz, (5)

where a(x, t,v, D) is an arbitrary function. Here D is the drop diameter (for simplicity the drops in the
spray are assumed spherical) and v is the drop velocity vector with the components vx, vy and vz. The
normalization condition of the probability density function f can be thus written in the form ={f} = 1.

These two functions, cn and f , completely determine the propagation of the liquid phase of the spray.
For example, the local number flux density vector, ṅ, and the local volume flux density vector, q̇ are
determined as

ṅ(x, t) = cn ={v f} , (6)

q̇(x, t) = π cn/6 =
{

v D3 f
}

. (7)



Next, determine also the local momentum flux density tensor as

Ṗ (x, t) = ρπ cn/6 =
{

v ⊗ v D3 f
}

. (8)

These quantities, characterizing the spray transport, will be used here for the description of the
hydrodynamics of the film created by the spray on the wall.

Time averaged motion of a liquid film
Consider a liquid film formed due to the impact of a spray onto a rigid wall (Fig. 2). Denote ez as

the unit vector normal to the wall and xw as the radius vector of a point at the wall. Define also the
gradient operator ∇ ≡ ∂/∂xw in the plane parallel to the wall.

The liquid film is bounded on the one side by the wall and from the other side by the free surface
Γ exposed to the spray impact. The boundary Γ includes the jets, capillary waves, crowns and craters
produced by drop impacts. We consider here the time averaged film surface 〈Γ〉 bounding a time averaged
film of the thickness h(xw, t). The local unit vector normal to 〈Γ〉 is designated γ = γ(xw, t).

One of the aims of this contribution is to indicate the influence of the parameters of the single drop
impacts on the motion of the film. This influence is described here using the simplest example: normal
impact of a spray onto a plane wall. Normal impact of the spray means that the values of q̇ · ∇h and
(Ṗ · ez) × ez vanish at x ∈ 〈Γ〉.

Next, we assume |∇h| � 1, such that the quasi-two-dimensional description of the film can be applied.
The depth-averaged velocity component of the liquid, u, parallel to the wall, can be represented in the
form u = 〈u〉 + u′, where 〈u〉 is the time averaged part of the velocity and u′ is its oscillating part.

Assuming that the rate of change of the film thickness, ∂h/∂t, is much smaller than the characteristic
velocity of the drops in the spray, the continuity of the film can then be written as

∂h

∂t
+ ∇ · (h〈u〉) + q̇ · ez = 0. (9)

Then, consider for simplicity the spray of a low viscous, low surface tension liquid impacting onto the
wall with a high velocity, such as the diesel spray shown in Fig. 1. We neglect the viscous and the surface
tension effects, neglect the gradient of the forces produced by the gas phase, and write the momentum
equation representing the balance of the inertial forces in the film in the plane parallel to the wall:

∂(hu)

∂t
+ ∇ · (h 〈u〉 ⊗ 〈u〉) + ∇ · h〈u′ ⊗ u′〉 = −

h

ρ
∇p (10)

The right-hand-side of (10) is the force associated with the the distribution of the dynamic pressure p
averaged through the film thickness, which is given in the form

p = −ez · (Ṗ · ez), at x ∈ 〈Γ〉, (11)

where the momentum flux density tensor Ṗ of the impacting spray is defined in Eq. (8).
The first term in the left-hand-side of (10) is the inertia of the liquid in the film associated with the

acceleration and the second term is the inertial term associated with the time averaged velocity.
The third term is the divergence of the momentum associated with the oscillating part of the flow in

the film. It is estimated with the help of (3) and (4) as the sum of the momentum tensors of impacting
drops:

ρ∇ · h〈u′ ⊗ u′〉 = ∇(Cs cn ={−Y v · ez f}), (12)

at x ∈ 〈Γ〉, where Cs is a correction factor accounting for the probability of intersection of the crowns on
the film surface. These crowns in the absence of the interactions should be the circles of the radii Rcr.
The specific cumulative area of these circles can be estimated as Acr = cn={−S v · ez f}, at x ∈ 〈Γ〉,
(with S being defined in (1)). Assuming the random distribution of these circles in space and time, the
probability that given point at the film surface does not belong to any crown can be determined with the
help of the Poisson’s distribution [7] as e−Acr . Therefore, the correction factor Cs, which is the ratio of
the specific area occupied by crowns to the specific cumulative area Acr of the circles, is given as

Cs = (1 − e−Acr )/Acr. (13)

The value of Cs is near unity only for very dilute sprays.
Note, also, that the ratio of the term (12), associated with the fluctuations of the film velocity, to the

right-hand-side of the equation (10), the term associated with the dynamic pressure, is estimated with the
help of Eq. (4) to be of order of D/h. Here D is the average drop diameter. Therefore, the momentum
of the radial flow produced in the film by the single drop impacts can be neglected in equation (10) only
when D � h, which is not always the case.



Short time analysis

In the approach considering the spray as a continuous media, the minimal characteristic length scale,

lcont, should be much larger than c
−1/3
n . However the number concentration can not be used to describe

the length scale of spray impact. Consider an element of area, dA, of the wall surface . The dynamic
pressure produced by the spray can be considered as continuous if the observation time is much larger
than tcont = dA−1ṅ−1

z , where ṅz is the number flux density of the impacting drops. During the times
much shorter than the characteristic time tcont the dynamic pressure can no longer be considered as a
continuous function but as an ensemble of single drop impacts.

We describe the fluctuations of the dynamic pressure considering the most singular event of the
spray/wall interaction - the impact of a single drop D0: – an arbitrary one among drops of the spray
impacting normal to the wall. The average number of drops (including drop D0) impacting onto a circle
of radius r during the time interval t after impact is λ = π r2 t ṅz, where the constant number flux
density into the film is defined as ṅz = −ṅ · ez. What is the distribution of drops around our drop D0?
Intuitively, when we will remove one drop from the uniformly distributed drops, we will obtain a ”hole”
in the neighborhood of the location of this removed drop. It is obvious that if λ � 1 the average number
of drops around the drop D0 is λ1 ≈ λ − 1. Below is the exact analysis of the drop distribution around
the drop D0 for any λ.

Assuming that the drops of the spray are distributed randomly in space and in time, the probability
P(k, λ) that exactly k drops impact onto the considered circle can be described by the Poisson distribution
[7]:

P(k, λ) =
e−λλk

k!
(14)

In order to determine the distribution P1 of drops around the given drop D0, the case k = 0 with the
probability P(0, λ) = e−λ should be excluded from the set of possible events. The minimum possible k
number is 1 (because the drop D0 has already impacted onto the considered area). Thus, the distribution
P1 can be given with the help of (14) by

P1(k1, λ) =
e−λ λk1+1

(1 − e−λ)(k1 + 1)!
, (15)

where k1 = k−1 is the number of drops impacted into the circle except the drop D0. The term (1−e−λ),
which is the probability that at least one drop including D0 will impact onto the circle, appears in the
denominator of the expression for P1 as a normalization parameter.

The average number of drops impacting onto the circle around the given point D0 is

λ1(r, t) =

∞
∑

k1=0

k1 P1 = λ eλξ−1 − 1, (16)

where ξ = eλ − 1. This number depends on the radius of the considered area around the drop D0 and
the time.

From the other hand, the number of drops λ1 can be determined using the statistically averaged
number flux density ṅ1z(r, t) of the drops around the drop D0:

λ1 =

t
∫

0

r
∫

0

2πrṅ1z(r, t)drdt (17)

The expressions (16) and (17) are used to determine ṅ1z(r, t) in the form ṅ1z(r, t) = G(r, t) ṅz where

G(r, t) =
1

2π r ṅz

∂2λ1

∂t∂r
= eλ

[

ξ−1 − 3λξ−2 + (2 + ξ)λ2ξ−3
]

. (18)

The function G expresses the ratio of the statistically averaged number flux ṅ1z of drops around the
given drop D0 to the number constant flux ṅz. This function approaches unity in the limit λ → ∞. This
means that the average distribution of the drops far from D0 is not influenced by the drop impact. At
small λ, in the neighborhood of the drop D0, the function G is not longer unity and can be approximated
as

G ≈ 1/2 + λ/3. (19)



Figure 3. The dimensionless, statistically
averaged radial velocity ũr in the film.

Figure 4. The dimensionless, statistically
averaged thickness h̃ of the film.

Variation of G in the radial direction means that the statistically averaged dynamic pressure p applied
by surrounding drops also varies, causing flow fluctuations in the film. This statistically averaged flow
will be analyzed below.

Using the length scale Λ and the time scale T in the form

Λ =

[

p

ṅ2
z π2ρ

]1/6

, T =

[

ρ

p ṅzπ

]1/3

, (20)

the equation for the statistically averaged mass balance and the momentum in the radial direction can
be obtained using the equations (9) and (10) in dimensionless form

∂h̃

∂t̃
+

1

r̃

∂(r̃ h̃ ũr)

∂r̃
= 0, (21)

∂(r̃h̃ũr)

∂t̃
+

∂(r̃ h̃ ũ2
r)

∂r̃
= − r̃ h̃

∂G

∂r̃
, (22)

where ũr is the dimensionless, statistically averaged radial velocity of fluctuations in the film. Note, that
the volume flux of the spray and the gradient of the dynamic pressure determine the temporary averaged
flow in the film, wich is expressed in the governing equations (9) and (10). However equations (21) and
(22) describe the motion only the fluctuations in the velocity of the film due to the fact that the dynamic
pressure is not continuous function.

The parameter λ can be written using the new dimensionless variables as λ = r̃2 t̃.
Let us find the solution of the system of equations (21)-(22) subject to the initial conditions:

h̃ = h̃0 = const, ũr = 0, at t̃ = 0,

corresponding to the initially stationary uniform film.
The asymptotical solution at small radii r can be obtained by substitution of the approximate value

of G expressed in (19) into equation (22). This solution reads:

ũr = −r̃t̃2/3
0F1

(

; 5/3;−2t̃3/27
)

0F1

(

; 2/3;−2t̃3/27
) , h̃ = h̃0 0F1

(

; 2/3;−2t̃3/27
)−2

,

where 0F1(; a; b) is the hypergeometric function. It can be shown that this solution becomes singular near
the axis r̃ = 0 at the time instant t̃ ≈ 2.274. This instant corresponds to the shock causing the creation
of the uprising central jet. This phenomena was observed in the experiments with the diesel spray impact
(see Fig. 1).

The numerical solutions of the system of the differential equations (21) and (22) obtained using the
expression (18) for the function G is shown in Figs. 3 and 4. The velocity distribution ũr in the film is
shown in Fig. 3. As the time approaches the critical value t̃ = 2.274 the velocity gradient at the center
(r̃ = 0) goes to minus infinity, whereas the film thickness grows there infinitely (see Fig. 4). Note however,



that at this time interval the inertial effects in the direction normal to the wall, as well as the surface
tension effects become significant and therefore the above model is no longer valid. In order to estimate
the height of the jets, the vertical motion of the jets must be modelled separately.

On the other hand, the diameter of the uprising jet shown in Fig. 4 is of order of the length scale Λ.
For the spray impact shown in Fig. 1 some parameter estimates were possible using results from phase
Doppler measurements. The length scale is of order Λ ∼ 15 µm, and the diameter of the observed jets
is approximately 30 µm, which is the same order as Λ. Moreover, the characteristic time of the drop
deformation is D/U ∼ 0.4 µs and the time of the crown propagation is approximately 10 D/U ∼ 4 µs.
The estimated time scale T ∼ 7 µs, is therefore of the order of the time of crown propagation, thus
the effect analyzed above should influence the drop impact. Next, the characteristic velocity of these
short-time fluctuations in the film is Λ/T ≈ 2 m/s.

Conclusions

In the present paper the hydrodynamics of a liquid film produced by an impinging spray is considered.
The spray is described as a continuum media, exhibiting specific properties, such as number concentration
of particles and their probability density function. Also, the definitions of the local flux density vectors
and tensors characterizing the spray are introduced.

The equations of motion of the film on the wall account, among others, for the momentum of the
fluctuating part of the velocity of the liquid in this film, the volume flux into the film, and the pressure
produced by the impacting spray.

The paper explains the emergence of the liquid jets during the impingement of very intense spay
by fluctuations of the pressure. The short times are considered during which the pressure produced by
the impacting drops can no longer be considered as continuous over the wall surface. Moreover, the
characteristic time and length of these fluctuations are determined.
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