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Abstract

This paper presents an edge detedor using the Jensen-Shannon divergence of grey level histograms obtained by
diding a double window over an image. A new technique for linking unconneded edge points, based on
estimated diredions, is also described. An application of edge extradion for diesel spray imagesis diown. From
this segmentation of the spray, the spray tip penetration can be measured. This information is an important
parameter to improve combustion in diesel engine.

Introduction

The ar/fuel mixing processin a diesel engine cmbustion chamber determines the combustion itself and the
pollutants emissons. The quality of the ready-to-burn mixture depends on the high pressure fuel spray evolution,
in terms of tip penetration, cone angle and locd atomisation. The knowledge of these parameters will help the
manufadurer to improve their fuel injedion system and provides data to the reseacher in order to increase its
understanding on the process To get thisinformation on the spray, non-intrusive opticd diagnostics are of prime
interest [1]. But due to the unsteadiness of the phenomenon, a lot of images may be recorded, from which by a
dtatisticd analysis based on spedfic images processng, we can dgve a description of the jet. To do that
efficiently, we nedl first of all a fully automated edge detedion contour [2]. This paper is devoted to the
applicaion of the Entropic edge detedion concept to the charaderisation of high pressure diesel fuel sprays. It is
composed of three parts : the experimental set up to colled the images, the implementation o the Jensen-
Shannon criteriato extrad the parameters and finally the results with regards to the spray tip penetration.

Experimental setup

First of all, it should be spedfied that all the experiments have been performed with 1SO 4113 prodf ail,
which isvery similar to diesel fuel as about density and viscosity.

The dasdcd Common Rail system includes a fuel pump, which can raise the Injedion Presaire (1P) up to
135MPa and a wmmon-rail tank, with an internal volume of 45 mm® which supplies ail to the injedor under
test. For our experiment, we use aVCO (Valve Covered Orifice) nozze injedor with five holes of diameter 150
pm The length of ead hole is around 600um and one hole is perpendicular to the ais, the others are drilled on a
spiral below.

The oil discharges at atmospheric presaire in a transparent chamber designed to operate safely as shown in
Figure 1. The injecor axe is oriented horizontally to avoid the injected fluid depasition on the horizontal viewing
faces. No vertica defledion of the spray has been observed. So we @n conclude that gravity does not disturb the
spray shape. White light sources il luminate the scene and we observed scatered light by the sprays. Images are
recorded by a CCD intensified camera with resolution 1024x1280 pixels and aperture time of 100 ns. Between
the beginning of the Injedion Control Signal (ICS) and the effedive beginning of the needle, which is a good
indication of the Start Of Injedion (SOI), there is adelay called Needle Opening Time Delay (NOTD) aswe an
seeonthe chronogram in Figure 2. This delay is due to the eledromechanical charaderistics of the injecor and
to the internal fluid behaviour (compressibility). The higher the injedion pressure is, the shorter the NOTD. In
our future spray tip penetration representation, we will use the beginning of the ICS as referencetime.



A specific electronic control unit controls the injection timing and duration, the injected quantity, the rail
pressure and synchronizes the camera.
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Figure 1. Schematic illustration of the experimental setup Figure 2. Chronogram of the injection process.

Edge detection method
Edge detection: Jensen Shannon divergence

Jensen-Shannon divergence (hereafter JS), proposed by Lin [3], has proved to be a powerful tool in the
segmentation of digital images and applications [4][5]. It is a measurement of the inverse cohesion of a set of
probability distributions Pi having the same number of possible realizations:

JS.(P,P,....P)=H EZnPH—ZnH( , (1)

where P, P,,..,P. are  discrete  probability  distributions { =0 n}, I =1...,r,
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D 1= D =

the Shannon entropy.

Divergence grows as the differences between its arguments (the probability distributions involved) increase,
and vanishes when all the probability distributions are identical. The application of JS to edge-detection is based
on athree-step structured procedure as follows [4].

Calculation of divergence and direction matrices

Let us consider a window made up of two identical subwindows and diding down over a straight edge
between two different textures as in Figure 3, in thiscase r = 2 in eg. (1). It has been shown [4] that in such
conditions JS of the normalized histograms of the subwindows reaches its maximum value when each
subwindow lies completely within one texture.
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Figure 3. A window dliding across a perfect straight edge.
If the window-to-edge direction is not perpendicular, JS maxima reaches lower values that may be close to

zero and then undetectable. This means we need to try several window orientations. For each pixel of the image,
four orientations of the window-to-edge direction are technically possible: vertical, horizontal and the two



diagonals. The maximum JS obtained with these four windows centered on the pixel of interest allows to build a
matrix of red numbers cdled divergence matrix.

At the same time the diredion d the elge —i.e. the diredion where JS readies its maximum— is estimated
from the periodicd behavior of JS with the window orientation and interpolating from the four JS avail able. The

diredion that maximizes JS resultsto be 0 = 71X (1[0, 7T) , where x verifies:
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The empiricd error in the determination of x is never greder than 0.004. Thus, a diredion matrix is then built
with the §’s value.

Obtaining edge pixels

Thresholding the divergence matrix [4][6] is hot always useful for dedde which pixels form the divergence
matrix are edge pixels, since maximum JS values depend on the cmposition of adjacent textures, and will thus
vary acording to texture. Consequently, it would seem more gpropriate to use alocd criterion. Accordingly,
ead edge-pixel candidate isthe cantre of an odd-length monodimensional window, perpendicularly placed to the
estimated edge diredion in that pixel (from the diredion matrix). The cndition for being an edge pixel is then:

JS,

central

-JS, 2T, (©)

for any other pixel j in that particular monodimensional window, where T, is athreshold. Pixels marked as edge
pixels are then outstanding locd maxima of the divergence matrix. Obviously, detedion results depend diredly
on the parameter Td , Which can be modified by the user if necessary.

This locd edge-pixel detection method requires smple divergence matrix pre-processng. Small
fluctuations, often due to noise in the original image or to texture regularity, can introduce agrea number of
false maximums, athough they are usually fairly low. The divergence matrix is therefore smocthed ou by
repeaedly applying a 3x3 mean filter.

Seledion of a locd maximum is, in a sense, a thinning procedure since just one pixel will usually be
deteded as an edge pixel within the neighborhood, as determined by the size of the monodimensional window.
In faa, rarely would more than one pixel share the same maximum JS.

It must be said, however, that direa application of the ébove method dces not provide goodresults for some
kinds of images —corrupted by Gaussian noise, or with regions having small fluctuations in grey levels—
because the JS could be too sensitive to any change in grey levels between regions. It is therefore better to
construct the divergence matrix including extra information in addition to the histogram information using the
foll owing expresson:
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where W, ; = ,N,, and N, being the average grey levels of subwindows W,and W, , and

N,, the maximum grey level inside the window (normalization factor). a0[0,1] is the atenuation fador, which

determines the weights of JS and the grey levels inside the window. This modification makes the JS suitable for
different kinds of images, thus transforming our algorithm into a hybrid among texture-based algorithms [7],
Jensen-Shannon divergence [6] and grey-level based algorithms (gradient, Lapladan, Lapladan and gradient of
the Gaussian, etc [8] ).
Edge linking

The two steps described above make it passble to extrad the image eldge pixels. However, it is not always
feasible to establish a good compromise between the quality of the binary image obtained and the desired



connectivity of the edge pixels, possibly due to the presence of noise in the original image, and the texture
composition of the image regions. In order to deal with these problems, a third step can be added: edge-pixel
linking. This step attempts to join the various sets of edge pixels using information from the divergence matrix
associated with the image, together with knowledge of the direction in which maximum JS is produced. In broad
terms, the linking procedure consists in extracting edge pixels unmarked since they did not satisfy the condition
(3), but nearly did. Not al the pixels in the image are candidates for filling the gaps, only those classified as
neighbor candidates of end pixels.

The definition of end pixel in [9] includes several variants that may influence the result of the linking
process. The present paper uses the definition of end pixel as a pixel having one or two marked pixels joined
together. Thus, only certain neighbor end pixels are candidates for prolonging image edges. In Figure 4 we
present the candidate pixels for containing a given edge. For a given neighbor candidate to be marked as an edge
pixel, it must satisfy two conditions:

. Its associated JS must be reasonably high. The first prolongation condition is then:
JSend - ‘JSneigbhour—candidate = Td ' (5)
where T, isathreshold, which has at first no relation with parameter T, in step 2 of the procedure.
+ The estimated edge-direction of the end pixel (Di leq), the edge-direction neighbor candidate

(Dir

differ by more than a specified amount. The second prolongation condition is then:

neighbour —candidate ) @Nd the direction of the physical line joining them ( Dirmd,ndghbour_cmdidate) must not

. . 2
(Dlrmd,neighbour-cmdidate - Dlrend)

(6)

. . 2 ’
+ (DI I’end, neighbour -candidate ~ Dlrneighbour—candidate) = T@
where T, is another threshold.

The two foregoing conditions are used in an attempt to extract as edge pixels those pixels lying next to end
pixels and whose JS and direction are sufficiently close to those of the end pixel to be extended. It should be
borne in mind that when a new pixel is marked as an edge, other adjacent pixels can then become end pixels. So,
the algorithm must foresee this event in order to continue the search for links.
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Figure 4. End points and neighbour candidates for edge prolongation. E: end point. C: neighbour candidates.
The remaining grey pixels are edge pixels.

Final considerations about edge detection procedure Typical usual parameters values

This section briefly summarizes all the parameters used by the edge-detection procedure. Initialy, the
proposed segmentation procedure may seem difficult to use due to the elevated number of parameters that user
can vary. But in practice the procedure is easy to use because al the images are similar. In the table below we
present the typical parameter values used in this work.

Parameter value Symbols Typical value

Sep1 Sliding v_vi ndow si_zg 3x3
Attenuation coefficient a 0.75
Monodimensional window size 11

Step 2 Mean filter iterations 8
Local maximum selection threshold Ty 0.7

Step 3 D@vergence threshold Tq 0.1
Direction threshold Ty 0.5

Main results

First hybrid texture based algorithm developed above is compared to the more classical grey level based
algorithms of Canny. Then the hybrid algorithm is used for injector design from tip penetration measurements.



Edge detection quality/reliability

The following images show the results of the propcsed edge detedion method applied to sprays from afive
holes injedor under 1P = 80 MPa. Our camera allows us to take only one image & a given instant of injedion.
For five successve injedions, five images are recorded at the same instant of the injedion. Then the elge
detedion by the Jensen-Shannon divergence method is computed on the average image of the spray at each
instant. Figure 7 shows the deteded spray boundaries overlaid on the original average image of Figure 5.

Figure5. Average image & agiven instant of an Figure 6. Average image at a given instant of an
injedion shot (IP =80 MPa) : here 590 us after SOI. injedion shot (IP = 80 MPa): here 1070ps after SOI

We can seethat the Jensen-Shannon method not only can extrad the elges of the spray but gives also
different brightnessareas due to the scattered light by the sprays. The peripheral areas of the spray are grey while
the cantral parts are very bright. The dgorithm allows deteding the limits of these different areas within the
sprays.

From the average image (Figure 5), the gradient based algorithm of Canny [10] was implemented.
Previoudy, a Gaussian filter was applied to this image to reduce the noise. Then the Canny filter is computed.
The result isgiven in the Figure 7.

Figure 7. Superpasition of the average image (Figure ~ Figure 8. Superpasition of the average image (Figure
5) and of the edges deteded by the JSagorithm. 590  5) and of the edges deteded when using Canny filter.
us after SOI . 590 s after SOI.

When comparing figures 7 and 8, we can see that the Jensen-Shannon segmentation gves results more
reli able than other methods based on the Gaussian gradient operator, such as the Canny filter.

Designing features

Analysing the evolution with time of the average images like in figure 5, hole-to-hole variations may be
observed in terms of spray angle and spray penetration, espedally for initial development of the spray. From the
figures 5 and figure 6, it appeas that later in the injedion shot, hole-to-hole spray variability of VCO nozzle
disappeaed. This observation is confirmed by the measurement of the spray tip penetration using the elge



extrad by the Jensen Shannon method. The two following charts $ow the penetration of the five sprays for two
different injedion presaure (40 and 80MPa).
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Figure 8. Spray tip penetration (40 MPa). Figure 9. Spray tip penetration (80 MPa).

At the first stage of injedion, spray tip penetrations are dosely related to their patterns. The penetration
varies significantly depending on the spray. However, at about 900 ms after the SOI, at 80 MPa, four sprays
read the similar values, only spray 1 keeps a higher penetration, at 40 MPa, spray 1 and 2 on one hand and
spray 3, 4, and 5 on the other hand, read similar values, but different for the two groups. This information is of
interest for the designer of the nozzle in order to get a homogeneous distribution of fuel droplets.

Conclusion

This paper deds basicdly with a method for the extradion of edge pixels, corresponding to the maxima of
the Jensen-Shannon divergence of the histograms of two subwindows. The method has been improved in an
hybrid procedure among texture-based algorithms, Jensen-Shannon dvergence and grey-level based algorithms
Additionally, a new algorithm is presented for edge linking using the same entropic technique.

This method was successfully applied on sprays images of afive-hole VCO nozzZle of Common Rail system.
Not only the eldges of the five sprays can be extrad showing their different evolutions with time, but aso
different brightnessareas within the sprays giving more reli able results than Canny method.

A hole-to-hole spray variability in terms of spray angle and spray penetration has been observed, espedally
for initial development. This observation is confirmed for two injedion presare by the measurement of the
spray tip penetration using the edge extrad by the JS method An increase of pressure deaeases the variability.
All these information are valuable for the designer of the nozzle in order to get a homogeneous distribution of
the fuel droplets to improve the mixture with air, and forward for the combustion process

The next step will be the automation of the procedure.
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