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Abstract 
This paper presents an edge detector using the Jensen-Shannon divergence of grey level histograms obtained by 
sliding a double window over an image. A new technique for linking unconnected edge points, based on 
estimated directions, is also described. An application of edge extraction for diesel spray images is shown. From 
this segmentation of the spray, the spray tip penetration can be measured. This information is an important 
parameter to improve combustion in diesel engine. 
 
Introduction 

The air/fuel mixing process in a diesel engine combustion chamber determines the combustion itself and the 
pollutants emissions. The quality of the ready-to-burn mixture depends on the high pressure fuel spray evolution, 
in terms of tip penetration, cone angle and local atomisation. The knowledge of these parameters will help the 
manufacturer to improve their fuel injection system and provides data to the researcher in order to increase its 
understanding on the process. To get this information on the spray, non-intrusive optical diagnostics are of prime 
interest [1]. But due to the unsteadiness of the phenomenon, a lot of images may be recorded, from which by a 
statistical analysis based on specific images processing, we can give a description of the jet. To do that 
efficiently, we need first of all a fully automated edge detection contour [2]. This paper is devoted to the 
application of the Entropic edge detection concept to the characterisation of high pressure diesel fuel sprays. It is 
composed of three parts : the experimental set up to collect the images, the implementation of the Jensen-
Shannon criteria to extract the parameters and finally the results with regards to the spray tip penetration. 

 
Exper imental setup 

First of all , it should be specified that all the experiments have been performed with ISO 4113 proof oil, 
which is very similar to diesel fuel as about density and viscosity. 

The classical Common Rail system includes a fuel pump, which can raise the Injection Pressure (IP) up to 
135 MPa and a common-rail tank, with an internal volume of 45 mm3 which supplies oil to the injector under 
test. For our experiment, we use a VCO (Valve Covered Orifice) nozzle injector with five holes of diameter 150 
µm The length of each hole is around 600µm and one hole is perpendicular to the axis, the others are drill ed on a 
spiral below. 

The oil discharges at atmospheric pressure in a transparent chamber designed to operate safely as shown in 
Figure 1. The injector axe is oriented horizontally to avoid the injected fluid deposition on the horizontal viewing 
faces. No vertical deflection of the spray has been observed. So we can conclude that gravity does not disturb the 
spray shape. White light sources il luminate the scene and we observed scattered light by the sprays. Images are 
recorded by a CCD intensified camera with resolution 1024×1280  pixels and aperture time of 100 ns. Between 
the beginning of the Injection Control Signal (ICS) and the effective beginning of the needle, which is a good 
indication of the Start Of Injection (SOI), there is a delay called Needle Opening Time Delay (NOTD) as we can 
see on the chronogram in Figure 2. This delay is due to the electromechanical characteristics of the injector and 
to the internal fluid behaviour (compressibili ty). The higher the injection pressure is, the shorter the NOTD. In 
our future spray tip penetration representation, we will use the beginning of the ICS as reference time. 



A specific electronic control unit controls the injection timing and duration, the injected quantity, the rail 
pressure and synchronizes the camera.  

 

 
 

Figure 1. Schematic illustration of the experimental setup 

 
 

Figure 2. Chronogram of the injection process. 
 

Edge detection method 
Edge detection: Jensen Shannon divergence 

Jensen-Shannon divergence (hereafter JS), proposed by Lin [3], has proved to be a powerful tool in the 
segmentation of digital images and applications [4][5]. It is a measurement of the inverse cohesion of a set of 
probability distributions Pi having the same number of possible realizations : 
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the Shannon entropy. 
Divergence grows as the differences between its arguments (the probability distributions involved) increase, 

and vanishes when all the probability distributions are identical. The application of JS to edge-detection is based 
on a three-step structured procedure as follows [4]. 
 
Calculation of divergence and direction matrices 

Let us consider a window made up of two identical subwindows and sliding down over a straight edge 
between two different textures as in Figure 3, in this case r = 2 in eq. (1). It has been shown [4] that in such 
conditions JS of the normalized histograms of the subwindows reaches its maximum value when each 
subwindow lies completely within one texture. 

 
 

 
 
 
 
 
 
 
 
 

Figure 3. A window sliding across a perfect straight edge. 
 

If the window-to-edge direction is not perpendicular, JS maxima reaches lower values that may be close to 
zero and then undetectable. This means we need to try several window orientations. For each pixel of the image, 
four orientations of the window-to-edge direction are technically possible: vertical, horizontal and the two 
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diagonals. The maximum JS obtained with these four windows centered on the pixel of interest allows to build a 
matrix of real numbers called divergence matrix.  

At the same time the direction of the edge —i.e. the direction where JS reaches its maximum— is estimated 
from the periodical behavior of JS with the window orientation and interpolating from the four JSi available. The 
direction that maximizes JS results to be ),0[ ππδ ∈= x , where x verifies:  
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The empirical error in the determination of x is never greater than 0.004. Thus, a direction matrix is then buil t 
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Obtaining edge pixels 

Thresholding the divergence matrix [4][6] is not always useful for decide which pixels form the divergence 
matrix are edge pixels, since maximum JS values depend on the composition of adjacent textures, and will thus 
vary according to texture. Consequently, it would seem more appropriate to use a local criterion. Accordingly, 
each edge-pixel candidate is the centre of an odd-length monodimensional window, perpendicularly placed to the 
estimated edge direction in that pixel (from the direction matrix). The condition for being an edge pixel is then: 

 

djcentral TJSJS ≥−
 

     (3) 

for any other pixel j in that particular monodimensional window, where dT  is a threshold. Pixels marked as edge 

pixels are then outstanding local maxima of the divergence matrix. Obviously, detection results depend directly 

on the parameter dT , which can be modified by the user if necessary. 

This local edge-pixel detection method requires simple divergence matrix pre-processing. Small 
fluctuations, often due to noise in the original image or to texture regularity, can introduce a great number of 
false maximums, although they are usually fairly low. The divergence matrix is therefore smoothed out by 
repeatedly applying a 3×3 mean filter. 

Selection of a local maximum is, in a sense, a thinning procedure since just one pixel will usually be 
detected as an edge pixel within the neighborhood, as determined by the size of the monodimensional window. 
In fact, rarely would more than one pixel share the same maximum JS. 

It must be said, however, that direct application of the above method does not provide good results for some 
kinds of images —corrupted by Gaussian noise, or with regions having small fluctuations in grey levels— 
because the JS could be too sensitive to any change in grey levels between regions. It is therefore better to 
construct the divergence matrix including extra information in addition to the histogram information using the 
following expression: 
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wN  the maximum grey level inside the window (normalization factor). α∈[0,1] is the attenuation factor, which 

determines the weights of JS and the grey levels inside the window. This modification makes the JS suitable for 
different kinds of images, thus transforming our algorithm into a hybrid among texture-based algorithms [7], 
Jensen-Shannon divergence [6] and grey-level based algorithms (gradient, Laplacian, Laplacian and gradient of 
the Gaussian, etc [8] ). 
Edge linking 

The two steps described above make it possible to extract the image edge pixels. However, it is not always 
feasible to establish a good compromise between the quali ty of the binary image obtained and the desired 
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Figure 4. End points and neighbour candidates for edge prolongation. E: end point. C: neighbour candidates. 
The remaining grey pixels are edge pixels. 

 

connectivity of the edge pixels, possibly due to the presence of noise in the original image, and the texture 
composition of the image regions. In order to deal with these problems, a third step can be added: edge-pixel 
linking. This step attempts to join the various sets of edge pixels using information from the divergence matrix 
associated with the image, together with knowledge of the direction in which maximum JS is produced. In broad 
terms, the linking procedure consists in extracting edge pixels unmarked since they did not satisfy the condition 
(3), but nearly did. Not all the pixels in the image are candidates for filling the gaps, only those classified as 
neighbor candidates of end pixels. 

The definition of end pixel in [9] includes several variants that may influence the result of the linking 
process. The present paper uses the definition of end pixel as a pixel having one or two marked pixels joined 
together. Thus, only certain neighbor end pixels are candidates for prolonging image edges. In Figure 4 we 
present the candidate pixels for containing a given edge. For a given neighbor candidate to be marked as an edge 
pixel, it must satisfy two conditions: 
• Its associated JS must be reasonably high. The first prolongation condition is then: 

dcandidateneigbhourend JSJS τ≤− − , (5) 

where dτ  is a threshold, which has at first no relation with parameter dT  in step 2 of the procedure. 

• The estimated edge-direction of the end pixel ( endDir ), the edge-direction neighbor candidate 

( candidateneighbourDir − ) and the direction of the physical line joining them ( candidate-neighbour ,endDir ) must not 

differ by more than a specified amount. The second prolongation condition is then: 
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where θτ is another threshold. 

The two foregoing conditions are used in an attempt to extract as edge pixels those pixels lying next to end 
pixels and whose JS and direction are sufficiently close to those of the end pixel to be extended. It should be 
borne in mind that when a new pixel is marked as an edge, other adjacent pixels can then become end pixels. So, 
the algorithm must foresee this event in order to continue the search for links. 

 

Final considerations about edge detection procedure Typical usual parameters values 
This section briefly summarizes all the parameters used by the edge-detection procedure. Initially, the 

proposed segmentation procedure may seem difficult to use due to the elevated number of parameters that user 
can vary. But in practice the procedure is easy to use because all the images are similar. In the table below we 
present the typical parameter values used in this work. 

 
 Parameter value Symbols Typical value 

Step 1 
Sliding window size 
Attenuation coefficient 

 �
 

3×3 
0.75 

Step 2 
Monodimensional window size 
Mean filter iterations 
Local maximum selection threshold 

 
 
Td 

11 
8 
0.7 

Step 3 
Divergence threshold 
Direction threshold 

�
d � �  

0.1 
0.5 

 
Main results 

First hybrid texture based algorithm developed above is compared to the more classical grey level based 
algorithms of Canny. Then the hybrid algorithm is used for injector design from tip penetration measurements. 

 



Edge detection quality/reliability 
The following images show the results of the proposed edge detection method applied to sprays from a five 

holes injector under IP = 80 MPa. Our camera allows us to take only one image at a given instant of injection. 
For five successive injections, five images are recorded at the same instant of the injection. Then the edge 
detection by the Jensen-Shannon divergence method is computed on the average image of the spray at each 
instant. Figure 7 shows the detected spray boundaries overlaid on the original average image of Figure 5. 

 

 
 

Figure 5. Average image at a given instant of an 
injection shot (IP = 80 MPa) : here 590 µs after SOI. 

 
 

Figure 6. Average image at a given instant of an 
injection shot (IP = 80 MPa): here 1070 µs after SOI 

 
We can see that the Jensen-Shannon method not only can extract the edges of the spray but gives also 

different brightness areas due to the scattered light by the sprays. The peripheral areas of the spray are grey while 
the central parts are very bright. The algorithm allows detecting the limits of these different areas within the 
sprays. 

From the average image (Figure 5), the gradient based algorithm of Canny [10] was implemented. 
Previously, a Gaussian filter was applied to this image to reduce the noise. Then the Canny filter is computed. 
The result is given in the Figure 7. 

 

 
 

Figure 7. Superposition of the average image (Figure 
5) and of the edges detected by the JS algorithm. 590 

µs after SOI . 

  
 

Figure 8. Superposition of the average image (Figure 
5) and of the edges detected when using Canny filter. 

590 µs after SOI. 
 
When comparing figures 7 and 8, we can see that the Jensen-Shannon segmentation gives results more 

reliable than other methods based on the Gaussian gradient operator, such as the Canny filter. 
 

Designing features 
Analysing the evolution with time of the average images like in figure 5, hole-to-hole variations may be 

observed in terms of spray angle and spray penetration, especially for initial development of the spray. From the 
figures 5 and figure 6, it appears that later in the injection shot, hole-to-hole spray variabili ty of VCO nozzle 
disappeared. This observation is confirmed by the measurement of the spray tip penetration using the edge 



extract by the Jensen Shannon method. The two following charts show the penetration of the five sprays for two 
different injection pressure (40 and 80 MPa). 
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Figure 8. Spray tip penetration (40 MPa). 
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Figure 9. Spray tip penetration (80 MPa). 
 

At the first stage of injection, spray tip penetrations are closely related to their patterns. The penetration 
varies significantly depending on the spray. However, at about 900 ms after the SOI, at 80 MPa, four sprays 
reach the similar values, only spray 1 keeps a higher penetration, at 40 MPa, spray 1 and 2 on one hand and 
spray 3, 4, and 5 on the other hand, reach similar values, but different for the two groups. This information is of 
interest for the designer of the nozzle in order to get a homogeneous distribution of fuel droplets.  

 
Conclusion 

This paper deals basically with a method for the extraction of edge pixels, corresponding to the maxima of 
the Jensen-Shannon divergence of the histograms of two subwindows. The method has been improved in an 
hybrid procedure among texture-based algorithms, Jensen-Shannon divergence and grey-level based algorithms 
Additionall y, a new algorithm is presented for edge linking using the same entropic technique.  

This method was successfully applied on sprays images of a five-hole VCO nozzle of Common Rail system. 
Not only the edges of the five sprays can be extract showing their different evolutions with time, but also 
different brightness areas within the sprays giving more reliable results than Canny method. 

 A hole-to-hole spray variabil ity in terms of spray angle and spray penetration has been observed, especially 
for initial development. This observation is confirmed for two injection pressure by the measurement of the 
spray tip penetration using the edge extract by the JS method. An increase of pressure decreases the variabil ity. 
All these information are valuable for the designer of the nozzle in order to get a homogeneous distribution of 
the fuel droplets to improve the mixture with air, and forward for the combustion process. 

 The next step will be the automation of the procedure. 
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