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ABSTRACT

This work addresses the modelling of evaporation in a droplet-laden gas flow within an Euler/Euler computational framework.
Conventional modelling is generally based on the evaporation of single droplets, for instance using the model of Abramzon
and Sirignano (1989). In the present study this modelling has been extended by introducing an additional transport equation
for a newly defined quantity, a, known as the phase-interface surface fraction. This allows the drop diameter to be quantified
in terms of a probability density function. The source term in the equation describing the dynamics of the volumetric fraction
of the dispersed phase αD is related to the evaporation time scale τΓ. The performance of the new model is evaluated using
simulations of a poly-dispersed spray in a 3-D duct configuration.

1 Introduction

When simulating the motion of liquid drops in a dry gas it is important to capture not only the evaporation but also the
interaction between the discrete and continuous phases. For instance strong evaporation rates influence the shear stress
dynamics at the interface and the overall droplet drag in the air flow. Typical applications include fuel injection systems,
spray drying in the foodstuff or pharmaceutical industries, or spray painting. Indeed, correct treatment of all transport
phenomena (break-up, evaporation, combustion, etc.) is a pre-requisite for optimization of such multiphase systems.
Generally the kinematics of such multiphase systems is described using either an Euler/Euler or Euler/Lagrange scheme.
In both approaches the continuous phase is simulated using a field (Euler) description. While the Euler/Euler approach
also simulates the disperse phase using a field description, the Euler/Lagrange approach uses a material description of the
disperse phase, computing individual particle trajectories.
Accounting for the interaction between discrete and continuous phase followed by a phase interchange due to disperse
phase evaporation is of decisive importance when simulating the motion of liquid drops in a dry gas. The evaporation
rate at the interfacial surface and the relative humidity influences strongly the shear stress dynamics and the drag rates of
continuous phase. The direct injection of a Diesel spray (break-up, evaporation and combustion are occurring sequentially)
or spray drying in food or chemical industry are only two illustrative examples for industrial research areas, which uses
powerful optimization tools for the prediction of multiphase transport processes. The capability of a computational scheme
to account for all important phenomena featuring these processes is a major prerequisite for successful optimization of many
industrial, multiphase systems. Most widely used computational schemes describing the kinematics of such multiphase
processes are the Euler/Euler and the Euler/Lagrange approachs. The velocity and other physical values of the continuous
carrier phase are simulated by the spacial Eulerian description in both approaches. While the particle velocity is simulated
as well in the Euler/Euler approach the Euler/Lagrangian description is simulation the ways of the dispersed drops, called
particle trajectories. For both approaches the interaction of droplet and carrier phase is given by mass, momentum and heat
exchange, which has to be modeled additionally. Although the numerical stability and robustness shows the high advantage
of the Euler/Lagrange approach, its disadvantage, the high numerical load, is noteworthy as well. The alternative approach,
the Euler/Euler approach, which describes the two phase flow as two interpenetrating continua, which are defined by a set
set of spacial equations which governs both phases. The volume fractions of the continuous αC and the dispersed phase αD

are given by new variables. The sum of the volume fraction of all participating phases is equal one. Turbulence describing
values of the dispersed particle phase are most often modeled by one equation for the transport of the turbulent kinetic
energy or an algebraic modeled turbulent viscosity. The model of the present work is in line with the model proposed by
He and Simonin [4] and differs from standard models with the covariance transport. This value integrates the correlation
of the particle and the carrier phase velocities.

2 Computational Method

A large number of statistical turbulence models for single-phase flows defining the Reynolds-stress tensor, whose gradient
originate from the (convective) turbulent transport of momentum, have been developed in the past. The most widely used
are those based on the Boussinesq’s analogy employing eddy viscosity as a model parameter. This model group ’transforms’
the Reynolds-stress gradient into a diffusion-like transport term. Such a diffusion term does not result from the interaction
between turbulent eddies in the two-phase flows; here, turbulent transport has a somewhat different nature due to non-
viscous character of the particles.
The turbulent motion of the particles is represented by mixing of particle clouds. In this work, a four-equation model is
used to mimic the transport of turbulence in both dispersed and continuous phase. The transport of the kinetic energy of
turbulence of both phases, the dissipation rate of the continuous phase and the covariance of the velocities of both phases
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are defined with these four equations. The complete specification of the background model could be found elsewhere (see
e.g., Groll et al., 2003) [3], here only details related to the evaporation modelling will be given.

2.1 Evaporation dependent Diameter PDF

In an evaporating process, the mass transfer rate on the drop surface depends on the drop size. The polydispersed spray
consists of drops with different diameters. To determine the mass transfer, i.e. the evaporation rate for such a case, the
drop diameter distribution of the spray is necessary. Using the approach based on a particle diameter probability density
function (PDF), Groll (2002) (see Fig. 1a for its graphical representation):
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depending on the Sauter mean diameter the mass transfer rate can be calculated. The expectation values of the squared
and cubic diameters in terms of the Sauter mean diameter only, result from this modelled PDF:
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A time dependent relation has to be defined to calculate the change of the drop diameter when simulating motion of a
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Figure 1: a) PDF of a normalized particle drop diameter in a polydisperse spray and b) temperature dependent
saturation pressure curve

polydispersed phase. The change of the expectation value of the diameter squared is presumed to be constant in accordance
to the d2-law, Kastner (2001):

d

dt
E
(
D2

p

)
= −Γ . (4)

Integration of this equation results in the time-dependent solution for the drop diameter:
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Substitution of the expectation value with the given density function definition
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reveals that the deviation of the Sauter mean diameter depends on the evaporation constant of the d2-law. Based on this
formulation, the following equation has been derived:
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With this expression, the time-dependent change of an expected drop volume is defined. The outcome of the last equation
is used for the determination of the mass transfer of a drop with the expected mass m̄p:
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Based on the evaporation model due to Abramzon and Sirignano [1], the mass transfer rate at the surface of a drop
representing a function of the Sherwood number Sh and the mass transfer coefficient BM
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both depending on the saturation pressure psat (see Fig. 1b) and the absolute humidity of the saturated gas phase Ysat
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is to be determined by using the following equation:

ṁ = πD21ρ
CDαβShBM . (11)

The humidities Ysat and Y∞ are related to the limiting cases of a complete saturated gas phase and far away from a droplet.
The definition of the Sherwood number Sh and its modification are given in the subchapter heat transfer. By equalizing the
PDF-dependent mass transfer rate and the modelled mass transfer rate, the evaporation constant in the model of Abramzon
and Sirignano is defined as:

π

4
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In accordance to the d2-law, the evaporation constant should be independent of the particle diameters. This fact brings an
additional constraint to the expectation values of the probability function:
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The given PDF fulfills this condition as follows:
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With the proposal of Abramzon and Sirignano, the time-dependent modelling of the drop diameter probability function is
closed.

2.2 Evaporation Progress

The model developed serves for calculation of the evaporation rate of spherical water drops. Water is a liquid dispersed
phase, which satisfies the d2-law. Keeping in mind the definition of the life time of a drop T and its diameter loss rate (Eq.
5), it is known, that each drop with a diameter
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is to evaporate completely. To determine the number of the evaporated drops in a cloud, the probability density function
has to be integrated in the following way:
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Consequently, the time change of the particle number is obtained as follows:
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The time change of the volumetric fraction

ᾱD = n̄ ·
π

6
E
(
D3

p

)
(19)

is calculated by using the results represented by Eqs. (7) and (18).
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The time change of the Sauter mean diameter consists of the deviations of the volumetric fraction and the surface fraction:
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Utilizing the results following from the Eqs. (6) and (20), the change of the surface fraction can also be formulated in terms
of the evaporation constant and the Sauter mean diameter:
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The source terms of the α-equation (Eq. 20) and the a-equation (Eq. 22) stay in following relationship:
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ā . (23)

Obviously, the source terms in both transport equations can be formulated in terms of the same parameter: τΓ (Eq. 26).
With the definition of the particle diameter probability density function as the starting point, the evaporation process is
finally modelled by the following two transport equations:

∂t

(
ρDᾱD
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)
+ ∂j

(
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The convective transport in both equations is defined by the volume-fraction-weighted averaged particle velocity < uD
i >D

[8]. The first equation (Eq. 24) originates from the well-known mass balance of the dispersed phase with a mass transfer
defining source term. The second equation (Eq. 25) governs the surface fraction of the dispersed phase, being the synonym
for the cloud surface per volume. The evaporation time scale τΓ, the source terms of this evaporation-describing two-equation
model depend upon, reads:
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ā

)−1

=
8

9π

D2
32

Γ
. (26)

Accordingly, the transport of both quantities αD and a depends on the evaporation constant Γ, which is given by the d2-law.
Introducing the definition of the evaporation constant, the final expression serving for the determination of the evaporation
time scale is given by:
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By solving the equations of the α-a model, the evaporation rate of a spray stream can be quantified. In such a way, the
mass balance of a two-phase flow is completely satisfied.

2.3 Heat transfer

Starting from the initial definitions of Nusselt and Sherwood Numbers
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the modifications due to Abramzon and Sirignano [1] are defined in the following way:
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Introducing these modified Sherwood and Nusselt numbers into the mass transfer equation
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the exponent φB featuring in the heat transfer coefficient (HTC) equation
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arises from Eq. (33):
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The heat flux
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depending on the Nusselt number Nu can also be described by BT and the liquid temperature dependent latent heat L(T D):
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Utilizing the heat flux definition given by Eq. (36), the mass transfer rate formulae can be finally written as a function of
the Nusselt number :
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In such a way, the mass transfer from the liquid to the gas phase can be determined. Here, the Nusselt number is calculated
using the algorithm outlined below (note that the Sherwood number and the mass transfer coefficient are defined by Eq.
(30) and (9) respectively). Starting from its initial value

Nu∗(0) = Nu0 . (39)

the following iterative algorithm is used for the Nusselt number determination:
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The truncation condition is defined by the ratio of the heat transfer coeficients :
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Herewith, the computational scheme describing the processes of the heat and mass transfer in an evaporating two-phase
flow is completed. As a conclusion, one can say that additional source terms in the equations of the continuous phase show,
that evaporation rate written in terms of the evaporation time scale τΓ exhibits similar effects on the turbulence as the drag
forces, modelled in terms of the relaxation time scale τp [3]. Due to the evaporation of the dispersed phase, the influence
of the mass transfer rate is restricted only on the volumetric fraction of the dispersed phase and has no influence on its
turbulent kinetic energy.

RESULTS

The derived model is demonstrated using a water spray evaporating in a fully developed duct flow. As an illustration of
the model performance, some selected results are shown in Figs. 2-3. In order to provide the fully-developed air flow and
turbulence conditions, a completely saturated gas phase (relative humidity was taken to be 100%, large dark area in Fig. 2)
was computed over the duct length of 260h = 5.2m (h-channel half-width), prior to the onset of the evaporation process.
After this length the turbulent two-phase channel flow becomes fully developed. The initial value of the temperature taken
in this region is 353K. The water drops with a mean diameter of 100µm are introduced in the air flow. Downstream of
this region the liquid phase evaporation is introduced by heating the duct walls up to the temperature of 368K (in such
a way the temperature gradient corresponding to the difference between initial value prescribed at the inlet cross-section -
x = 0 - and the constant wall temperature was imposed) causing a decrease in the relative humidity, Fig. 2. Consequently,
the mean drop diameter decreases too, Fig. 3. Because of the saturation pressure gradient maximum (dYsat/dT ) near the
boiling point at 373K (Fig.1b), the gas temperature is chosen to be between 353K and 368K. In order to prevent the boiling
of the water drops, the wall temperature has to be lower than the boiling temperature.
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Figure 2: Distribution of the relative humidity obtained by the present Euler/Euler scheme
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Fig. 3: Droplet diameter isolines obtained by the present Euler/Euler scheme

Fig. 4a displays the evolution of the mass transfer coefficients BM in the Abramzon and Sirignano evaporation model. This
coefficient, representing indeed a measure of the vapor fraction being absorbed by the surrounding gas phase, increases due
to warm up of the gas phase, because of the decreasing relative humidity. The ratio of the droplet surface to the droplet
volume increases by the droplet diameter reduction (Fig. 3). Due to the temperature raise, resulting in the intensification
of the evaporating process, the time scale of the evaporation is decreasing, Fig. 4b.

a)

0.0374476

0.0480359

0.069873

0.108855
0.147837

0.186819
0.264783

0.498675
0.96646

Z

Y

0 0.05 0.1 0.15 0.20

0.005

0.01

0.015

0.02

0.305057

0.323451

0.365393

0.49972

0.701211
1.03703 1.30568 1.57434

Z

Y

0 0.05 0.1 0.15 0.20

0.005

0.01

0.015

0.02

b)

1.324441.23607
1.08879

0.912054

0.735316
0.529121
0.38184
0.234558
0.146188

0.028363

Z

Y

0 0.05 0.1 0.15 0.20

0.005

0.01

0.015

0.02

0.0674545

0.0575714

0.0427468

0.0279222

0.0130977

0.00815613

0.0229807

0.0427468

0.05757140.0229807

0.0180392

0.0476884

0.0328638
0.0328638

Z

Y

0 0.05 0.1 0.15 0.20

0.005

0.01

0.015

0.02

Figure 4: Isolines of a) mass transfer coefficients BM and b) time scale of evaporation τΓ (in seconds) across the duct at
two selected longitudinal locations x/h = 20 (left) and 140 (right) obtained by the present Euler/Euler scheme

CONCLUSIONS

Based on a new two-equation model the transport of the mean drop diameter in a dispersed two-phase flow has been
developed using a coupling mechanism based on the predicted pdf. Using this model the mutual influence of the two phases

on each other are quantified in terms of transport equations of a and αD .
Based on the definition of an evaporation or mass transfer time scale τΓ the drop specific model of the local mass transfer rate
near a single drop can be extrapolated to a global mass transfer rate considering the distribution of drop sizes. During the
change of the mean drop size the influence on interaction of momentum and turbulence is also quantified applying this model.
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