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ABSTRACT

The break-up process of a drop or bubble immersed in a turbfieev at high Reynolds numbers is
numerically studied assuming that both the inner and theraatocity fields are irrotational. Under this
approximation, the time evolution of the drop’s interfase&eomputed, for a wide range of the inner to
outer density ratioA, through a boundary integral method once the turbulentitylfield is modelled
as an axisymmetric straining potential flow. Despite ofiitsicity, the model reproduces the main fea-
tures of the turbulent break-up of drops and bubbles obdexgerimentally. Furthermore, if the density
ratio is close to unity, the slender geometry of the drop&ples] in the numerical simulations suggest a
simplified theoretical model which accurately reprodubesrtumerically obtained time evolution of the
radius of the drop.

INTRODUCTION

Due to the complexity of turbulence, the study of the turbtitereakup of drops and bubbles (hereafter named par-
ticles) demands, as a first approach, simple models than rsta physical mechanisms of the breakup process. In the
present paper, the turbulent breakup of particles at higim&lds number is modelled assuming that both inner and outer
velocity fields are irrotational. Furthermore, as suggkbtethe experimental results, the turbulent velocity fieldsch
promote the breakup have been approximated, in the viabfitige particle, to an axisymmetric straining flow. In effect
experiments on the breakup in a turbulent water jet of budfdleor heptane droplets [2], show that the particles eltmga
in one direction during the first stages of the process (sge. Fla-b), giving rise to the so called cigar-shaped break-
up [3]. Consequently, although the turbulent flow surrongdhe particle is fully three dimensional and does not have
any kind of symmetry, the flow pattern leading to the partfmeak-up can be modelled, in a first approximation, as an
axisymmetric, hyperbolic type of flow (see [3]).
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Fig. 1: (a) High speed (1000 f.p.s.) video images of the flehdeakage of an air bubble injected at the centerline of

a turbulent water jet. The flow goes from left to right. (b) 8keup of a heptane drop immersed in a turbulent water jet.

It can be observed that the drop is stretched until it becanssnder ligament before breaking. (Heptane images taken
from [2]).

Although the present approach to model the external vgifield was first employed in the case of the axisymmetric
viscous break-up of droplets, [4], the turbulent breakupwibles at high Reynolds numbers has also been studied by



Shreekumar et al. [5] and Higuera [6] under the same axisymcrpotential flow approximation for velocity fields dif-
ferent from the one adopted here.

The paper is structured as follows: the equations and boyrdaditions governing the time evolution of the velocity
and pressure fields, both inside and outside the partidalescribed in the following section. Results concernirtghoibe
and drop breakup will be also presented and the last sectidevoted to the conclusions.

PROBLEM FORMULATION

The numerical simulations presented in this work providehhe time evolution of the interface of an immiscible
particle of initial radiusiy and density;, immersed into an infinite volume of a different fluid of degsi., with a surface
tension coefficienty. The flow inside and outside the droplet will be considereatational. The outer fluid velocity field
far from the particle’s interface is imposed and matchehk aihyperbolic axisymmetric flow of the form

up = —2Mr/ag , u, = 4Mz/ag, 1)

where M is the flow intensity. In terms of the dimensionless varialdefined withag, t. = \/peag/a andp, as the
characteristic scales for length, time, and density respy, the equations governing the inner and outer poaéfitws
read
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where the subscriptse stand for the inner and external fluid respectively. Equeti@) are the Laplace equations for the
velocity potentials; ), and equations (3) are the Bernoulli equations for the pred@ldsp ; o) With A e) = p(ie)/pe-
Moreover,Fy ) are functions of time which, in this problem, can be set t@ zethout loss of generality since they can
be included in the definitions af(; ., without changing the velocity. Equations (2)-(3) must blvet subjected to the
following boundary conditions
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at the particle’s interface. In equation (%),e = pe (8M)2 ag /o is the particle’s Weber number. The time evolution of
the particle’s interface will be computed by solving Eqs-7(2vith the numerical method described in [7]. The results
concerning the breakup of bubbles and drops are presentiee fallowing two sections.

BUBBLE BREAK-UP

The first case of interest for practical applications is theak-up of a gas bubble immersed in a turbulent liquid
flow. Since, in this case, the density ratio< 1, the only parameter governing the problem is the Weber nunite
time evolution of the bubble interface computed for two eliént values of the Weber number, namBfy = 3.0 and
We = 10.0, is depicted in Figs. 2a-b.

It must be noticed that, in the bubble break-up case, nolisaselvere formed and, therefore, the break-up was always
binary within the range of Weber numbers exploi&d. < We < 200. HereWe. denotes the critical Weber number
defined as the minimum value &Fe needed for a bubble to break. This conclusion is in agreemgntprevious ex-
perimental observations such those provided in [8, 9, 1@ reported that the observed break-up events were mostly
binary for moderately high Weber numbers. Bubble breakeapling to more than two fragments is rarely observed in
experiments.

The numerical simulations also provide the dimensionlesalzup timel;,, shown in Fig. 3a for a wide range of Weber
numbers. Notice that, in the limit d/e > 1, the dimensionless break-up time scale§ias~ We~'/2, consistently
with the fact that in this case the only relevant time scal¢hefproblem is the convective time. Once an appropriate
Weber number is defined, the results depicted in Fig. 3b mayskd to compare with the experimentally measured
frequency. Thus, our numerical results will be compareth wie experimental measurements of the break-up time of air
bubbles injected at the axis of a submerged turbulent wateeported in [9, 10]. Since in these experiments the radius
of the generated bubblegy ~ 0.89 mm) falls within the inertial subrange of the turbulent enespectrum, the flow
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Fig. 2: Time evolution of the break-up process of a drop/beibir different values of the Weber number. {&e = 3.0
andA = 0, (b) We = 10.0andA = 0, (¢c) We = 3.0 andA = 0.8, (d) We = 10.0 andA = 0.8. In this last case, only
half of the droplet is shown.

field at scales of the order of the size of the bubble may beideredd as homogeneous and isotropic. Consequently, the
appropriate time scale for the outer velocity field is the given byta, = 8~/2(cay?)~'/3, wheree is the dissipation
rate of turbulent kinetic energy per unit mass ghid a numerical constant of order unity. Therefore, the tlantmVeber
number is usually defined as

2/3 5/3
we, = L0 0 ®)

g

The comparison between the experimentally measured hnefdequencyy, reported in [9] and that provided by the
model is shown in Fig.3b. The solid line corresponds to thaemical results which, in order to be appropriately comgare
with the experimental measurements, need to be scalge=aS'/(t. Ty,) with C' = 0.1 and = 5 for a turbulent critical
Weber numbeiVe,. = 2.3. These proportionality constants account for the degréeetlom involved in the definition
of the convective and capillary times. Notice that the nuoacomputations compare fairly well with experimentsreve
in the case of moderate Weber numbers. Thus, if a Weber nufob#re problem is defined consistently, the bubble
break-up time can be determined by means of this simple muadhet avoids to consider more complex aspects of the
flow.

DROP BREAK-UP

Numerical results describing the breakup of drops are pteden this section for a wide range of the Weber numbers,
We, and density ratios ~ O(1)]. The main feature characterizing the droplet break-uggss is that, as depicted in
Figs. 2c-d, two drops are symmetrically formed at the endssaf an intermediate ligament. Consequently, insteadeof th
binary breakup observed in the case of bubbles, dropletbiexdrtiary break-up. Moreover, the length of the ligarhen
increases with respect to that of the end drops as the Welpelberuand the density ratio increases. Notice in Fig. 2¢
that, for values of the Weber number close to the critical, @nemall satellite is formed. However, for larger values of
the Weber number, the drop elongates considerably, gémgeaslender ligament whose lengthis much larger than its
radius,a, at the pinch-off time{/a > 1, (see Fig. 2d).

The same type of qualitative behavior is experimentallyeobsd in the turbulent breakup of drops at high Reynolds
numbers [2]. Note in Fig. 1b that the particle is stretchedh®ysurrounding flow until it is sufficiently elongated to
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Fig. 3: (a) Dependence of the dimensionless break-up tintelolbles 7}, with the Weber number. (b) Comparison of
the predicted break-up frequency (solid line) with the ekpental measurements of Martinez-Bazén and co-workérs [9
(squares) for air bubbles of radius= 0.89 mm injected at the axis of a submerged water jet.
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Fig. 4: Dependence of the break-tpJVe'/2, with the density ratio\ for several values of the Weber number.

develop a capillary pinch-off near the tips. The similitusdween experimental and numerical observations leadthe to
conclusion that the elongation and subsequent break-upeafrop are phenomena driven by inertial and surface tension
forces. Thus, although viscous diffusion may influence treakup frequency [2], the large elongations of the droplets
observed in experiments can be attributed to the inner fhédia.

The dependence of the breakup tirig, on thelt e andA can be also determined from our numerical simulations. ;Thus
figure 4 shows the scaled breakup tiffigl ¢'/2 as a function of the density ratib. The good collapse of all the data is
again a consequence of the fact that the relevant time stile problem for sufficiently high values of the Weber number
is the convective time. Furthermore, figure 4 also showsttteascaled breakup time depends linearly on the density rati
for We > 1. This scaling dependence does not follow directly from thalysis but can be justified through a simplified
analytical model based on the highly elongated shape ofrityeltefore breaking-up whdie > 1 andA ~ O(1). This

will be the matter of the following subsection.

Description of the evolution of the particle surfacewhen We > 1and A ~ O(1)

Fig.2d. shows that, after a short initial transient, thepddeforms into a slender ligament with a slowly varying
diameter except in a region close to the ends. This sugdestsduring most of the break-up process, the drop may
be modelled as a constant volume cylinder whose radius angthid: and! respectively) are time dependent. The first
order solution{/a — oo) for the velocity field inside and outside the cylinder carabalytical obtained by solving the
Laplace equations (2) together with the boundary conditigimen by equations (4), (5) and (7). Moreover, since the
model assumes that the ligament is a cylinder, the normedstralance condition (6) can be conveniently written as

pi(r:a,z,t)—pe(rza,z,t):ﬁ, 9)
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Fig. 5: Time evolution of the ligament's aspect ratio obé&girirom numerical simulations for different values/ofind
W e together with the evolution predicted by Eq. (10).

Hence, once the condition (9) is imposed at the ligamentsface, a free parameter equation governing the time evolu
tion of a(t) can be written in terms of the scaled variable= ¢t /We/A as,
23 1o, (10)

a a? 8

This simple model has been validated by comparing the tinotugen of the drop aspect ratiya predicted by (10)
together with the mass conservation equatiot? (= constant), with the results obtained numerically. Fig. 5 shows
that the numerical results, obtained for a wide rang@/afandA values, follow very closely thé/a(T") function given

by equation (10). However, it must be also noticed that thaerical results deviate from the model for density ratios
A < 0.4. Such deviation is due to the fact that the slenderness hgpistis no longer satisfied.

The result shown in Fig.5 also indicates that the stretchimg scales with the square root of the density ratio. Conse-
guently, the stretching process has a different time degrecelwithA than the breakup process previously described (see
Fig.4). This different trend can be explained by noticingttthe break-up process may be divided into two separated
stages: an inertial one, in which the drop stretches in theexplained above, and a capillary driven pinch-off, simita

that described in [11].

Since the second stage is much shorter than the first onerehk-hp time may be assumed to be the time taken by the
drop to reach a transition radius,.,,, below which inertial effects are no longer important. Oim@ations showed that
this transition radius depends only on the density ratimdgetaken the asymptotic limit of Eq. (10) for long times th

break-up time may be estimated as
th ~ —v/A/We log rtran () (11)

Therefore, the break-up time grows faster than the squateofathe density ratio since, in the range of parameters
considered herey,., decreases monotonically with

CONCLUSIONS

The main features of the break-up of a drop or bubble in an lygmeous and isotropic turbulent flow have been repro-
duced under the potential flow approximation, assumingttieflow pattern producing the breakup is an axisymmetric
hyperbolic type of flow described by [3]. In the case of bubbkhe break-up time predicted by the numerical model
agrees very well with that experimentally measured by [9,0b@e the Weber number is properly defined.

The role of the inner fluid density in the break-up processdtasbeen investigated. A first result of interest, whicleagr
with experimental observations [2], is that, if the innedauter fluid densities are comparable, the drop deformsanto
slender ligament and ultimately breaks-up due to capiltémgh-off. Furthermore, since viscous diffusion is notlirted

in the model, it can be concluded that the break-up procedsvien by inertia forces. In addition, a simple analytical
model that accurately reproduces the numerically obtadiinegl evolution of the drops radii in the casesitk > 1 and

A ~ O(1) has also been developed .
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LIST OF SYMBOLS

ag Initial radius of the patrticle. tau,tc Convective and capillary times.
a Dimensionless radius of the ligament. u(rz) Velocity components.
g Break-up rate of bubbles. We Weber number.
[ Dimensionless ligament length. Awu  Velocity difference between the polestat 0.
M Intensity of the straining flow. ¢ Dissipation rate of turbulent kinetic energy.
n;.) Normalvector to the interface. ¢i,.) Dimensionless inner and outer velocity potentials.
P Innerand outer dimensionless pressures. A Density ratio between the inner and outer fluids.
riran  DimMensionless transition radius. Pie) Innerand outer densities.

ty, T, Dimensional/Dimensionless break-up time. o Surface tension coefficient.
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