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ABSTRACT

The break-up process of a drop or bubble immersed in a turbulent flow at high Reynolds numbers is
numerically studied assuming that both the inner and the outer velocity fields are irrotational. Under this
approximation, the time evolution of the drop’s interface is computed, for a wide range of the inner to
outer density ratio,Λ, through a boundary integral method once the turbulent velocity field is modelled
as an axisymmetric straining potential flow. Despite of its simplicity, the model reproduces the main fea-
tures of the turbulent break-up of drops and bubbles observed experimentally. Furthermore, if the density
ratio is close to unity, the slender geometry of the drops observed in the numerical simulations suggest a
simplified theoretical model which accurately reproduces the numerically obtained time evolution of the
radius of the drop.

INTRODUCTION

Due to the complexity of turbulence, the study of the turbulent breakup of drops and bubbles (hereafter named par-
ticles) demands, as a first approach, simple models that retain the physical mechanisms of the breakup process. In the
present paper, the turbulent breakup of particles at high Reynolds number is modelled assuming that both inner and outer
velocity fields are irrotational. Furthermore, as suggested by the experimental results, the turbulent velocity fieldswhich
promote the breakup have been approximated, in the vicinityof the particle, to an axisymmetric straining flow. In effect,
experiments on the breakup in a turbulent water jet of bubbles [1] or heptane droplets [2], show that the particles elongate
in one direction during the first stages of the process (see Figs. 1a-b), giving rise to the so called cigar-shaped break-
up [3]. Consequently, although the turbulent flow surrounding the particle is fully three dimensional and does not have
any kind of symmetry, the flow pattern leading to the particlebreak-up can be modelled, in a first approximation, as an
axisymmetric, hyperbolic type of flow (see [3]).
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Fig. 1: (a) High speed (1000 f.p.s.) video images of the slender breakage of an air bubble injected at the centerline of
a turbulent water jet. The flow goes from left to right. (b) Break-up of a heptane drop immersed in a turbulent water jet.
It can be observed that the drop is stretched until it becomesa slender ligament before breaking. (Heptane images taken
from [2]).

Although the present approach to model the external velocity field was first employed in the case of the axisymmetric
viscous break-up of droplets, [4], the turbulent breakup ofbubbles at high Reynolds numbers has also been studied by



Shreekumar et al. [5] and Higuera [6] under the same axisymmetric potential flow approximation for velocity fields dif-
ferent from the one adopted here.

The paper is structured as follows: the equations and boundary conditions governing the time evolution of the velocity
and pressure fields, both inside and outside the particle, are described in the following section. Results concerning bubble
and drop breakup will be also presented and the last section is devoted to the conclusions.

PROBLEM FORMULATION

The numerical simulations presented in this work provide with the time evolution of the interface of an immiscible
particle of initial radiusa0 and densityρi, immersed into an infinite volume of a different fluid of density ρe, with a surface
tension coefficient,σ. The flow inside and outside the droplet will be considered irrotational. The outer fluid velocity field
far from the particle’s interface is imposed and matches with a hyperbolic axisymmetric flow of the form

ur = −2Mr/a0 , uz = 4Mz/a0 , (1)

whereM is the flow intensity. In terms of the dimensionless variables defined witha0, tc =
√

ρea3
0/σ andρe as the

characteristic scales for length, time, and density respectively, the equations governing the inner and outer potential flows
read

∇2φ(i,e) = 0, (2)

Λ(i,e)

(

∂φ(i,e)

∂t
+

|∇φ(i,e)|2
2

)

+ p(i,e) = P0(i,e), (3)

where the subscriptsi, e stand for the inner and external fluid respectively. Equations (2) are the Laplace equations for the
velocity potentialsφ(i,e), and equations (3) are the Bernoulli equations for the pressure fieldsp(i,e) with Λ(i,e) = ρ(i,e)/ρe.
Moreover,P0(i,e) are functions of time which, in this problem, can be set to zero without loss of generality since they can
be included in the definitions ofφ(i,e) without changing the velocity. Equations (2)-(3) must be solved subjected to the
following boundary conditions

∂φ(i,e)

∂r
= 0 at r = 0, (4)

∇φe → −
√

We r/4 er +
√

We z/2 ez when (r, z) → ∞ (5)

and pi − pe = ∇ · ni, (6)
∂φi

∂ni
= −∂φe

∂ne
, (7)

at the particle’s interface. In equation (5),We = ρe (8M)
2
a0/σ is the particle’s Weber number. The time evolution of

the particle’s interface will be computed by solving Eqs. (2-7) with the numerical method described in [7]. The results
concerning the breakup of bubbles and drops are presented inthe following two sections.

BUBBLE BREAK-UP

The first case of interest for practical applications is the break-up of a gas bubble immersed in a turbulent liquid
flow. Since, in this case, the density ratioΛ � 1, the only parameter governing the problem is the Weber number. The
time evolution of the bubble interface computed for two different values of the Weber number, namelyWe = 3.0 and
We = 10.0, is depicted in Figs. 2a-b.

It must be noticed that, in the bubble break-up case, no satellites were formed and, therefore, the break-up was always
binary within the range of Weber numbers exploredWec ≤ We ≤ 200. HereWec denotes the critical Weber number
defined as the minimum value ofWe needed for a bubble to break. This conclusion is in agreementwith previous ex-
perimental observations such those provided in [8, 9, 10, 1]who reported that the observed break-up events were mostly
binary for moderately high Weber numbers. Bubble break-up leading to more than two fragments is rarely observed in
experiments.

The numerical simulations also provide the dimensionless break-up timeTb, shown in Fig. 3a for a wide range of Weber
numbers. Notice that, in the limit ofWe � 1, the dimensionless break-up time scales asTb ∼ We−1/2, consistently
with the fact that in this case the only relevant time scale ofthe problem is the convective time. Once an appropriate
Weber number is defined, the results depicted in Fig. 3b may beused to compare with the experimentally measured
frequency. Thus, our numerical results will be compared with the experimental measurements of the break-up time of air
bubbles injected at the axis of a submerged turbulent water jet reported in [9, 10]. Since in these experiments the radius
of the generated bubbles (a0 ' 0.89 mm) falls within the inertial subrange of the turbulent energy spectrum, the flow
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Fig. 2: Time evolution of the break-up process of a drop/bubble for different values of the Weber number. (a)We = 3.0
andΛ = 0, (b) We = 10.0 andΛ = 0, (c) We = 3.0 andΛ = 0.8, (d) We = 10.0 andΛ = 0.8. In this last case, only
half of the droplet is shown.

field at scales of the order of the size of the bubble may be considered as homogeneous and isotropic. Consequently, the
appropriate time scale for the outer velocity field is the onegiven byt∆u = β−1/2(εa−2

0 )−1/3, whereε is the dissipation
rate of turbulent kinetic energy per unit mass andβ is a numerical constant of order unity. Therefore, the turbulent Weber
number is usually defined as

Wet =
ρe β ε2/3a

5/3
0

σ
, (8)

The comparison between the experimentally measured break-up frequency,g, reported in [9] and that provided by the
model is shown in Fig.3b. The solid line corresponds to the numerical results which, in order to be appropriately compared
with the experimental measurements, need to be scaled asg = C/(tc Tb) with C = 0.1 andβ = 5 for a turbulent critical
Weber numberWetc = 2.3. These proportionality constants account for the degree offreedom involved in the definition
of the convective and capillary times. Notice that the numerical computations compare fairly well with experiments even
in the case of moderate Weber numbers. Thus, if a Weber numberfor the problem is defined consistently, the bubble
break-up time can be determined by means of this simple model, what avoids to consider more complex aspects of the
flow.

DROP BREAK-UP

Numerical results describing the breakup of drops are presented in this section for a wide range of the Weber numbers,
We, and density ratios [Λ ∼ O(1)]. The main feature characterizing the droplet break-up process is that, as depicted in
Figs. 2c-d, two drops are symmetrically formed at the end sides of an intermediate ligament. Consequently, instead of the
binary breakup observed in the case of bubbles, droplets exhibit tertiary break-up. Moreover, the length of the ligament
increases with respect to that of the end drops as the Weber number and the density ratio increases. Notice in Fig. 2c
that, for values of the Weber number close to the critical one, a small satellite is formed. However, for larger values of
the Weber number, the drop elongates considerably, generating a slender ligament whose length,l, is much larger than its
radius,a, at the pinch-off time,l/a � 1, (see Fig. 2d).
The same type of qualitative behavior is experimentally observed in the turbulent breakup of drops at high Reynolds
numbers [2]. Note in Fig. 1b that the particle is stretched bythe surrounding flow until it is sufficiently elongated to
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Fig. 3: (a) Dependence of the dimensionless break-up time ofbubbles,Tb, with the Weber number. (b) Comparison of
the predicted break-up frequency (solid line) with the experimental measurements of Martínez-Bazán and co-workers [9]
(squares) for air bubbles of radiusa ≈ 0.89 mm injected at the axis of a submerged water jet.
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Fig. 4: Dependence of the break-up,TbWe1/2, with the density ratioΛ for several values of the Weber number.

develop a capillary pinch-off near the tips. The similitudebetween experimental and numerical observations lead us tothe
conclusion that the elongation and subsequent break-up of the drop are phenomena driven by inertial and surface tension
forces. Thus, although viscous diffusion may influence the breakup frequency [2], the large elongations of the droplets
observed in experiments can be attributed to the inner fluid inertia.
The dependence of the breakup time,Tb, on theWe andΛ can be also determined from our numerical simulations. Thus,
figure 4 shows the scaled breakup timeTb We1/2 as a function of the density ratioΛ. The good collapse of all the data is
again a consequence of the fact that the relevant time scale of the problem for sufficiently high values of the Weber number
is the convective time. Furthermore, figure 4 also shows thatthe scaled breakup time depends linearly on the density ratio
for We � 1. This scaling dependence does not follow directly from the analysis but can be justified through a simplified
analytical model based on the highly elongated shape of the drop before breaking-up whenWe � 1 andΛ ∼ O(1). This
will be the matter of the following subsection.

Description of the evolution of the particle surface when We � 1 and Λ ∼ O(1)

Fig.2d. shows that, after a short initial transient, the drop deforms into a slender ligament with a slowly varying
diameter except in a region close to the ends. This suggests that, during most of the break-up process, the drop may
be modelled as a constant volume cylinder whose radius and length (a andl respectively) are time dependent. The first
order solution (l/a → ∞) for the velocity field inside and outside the cylinder can beanalytical obtained by solving the
Laplace equations (2) together with the boundary conditions given by equations (4), (5) and (7). Moreover, since the
model assumes that the ligament is a cylinder, the normal stress balance condition (6) can be conveniently written as

pi (r = a, z, t) − pe (r = a, z, t) =
1

a(t)
, (9)
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Fig. 5: Time evolution of the ligament’s aspect ratio obtained from numerical simulations for different values ofΛ and
We together with the evolution predicted by Eq. (10).

Hence, once the condition (9) is imposed at the ligament’s interface, a free parameter equation governing the time evolu-
tion of a(t) can be written in terms of the scaled variableT = t

√

We/Λ as,

ä

a
− 3

ȧ2

a2
+

1

8
= 0 , (10)

This simple model has been validated by comparing the time evolution of the drop aspect ratiol/a predicted by (10)
together with the mass conservation equation (l a2 = constant), with the results obtained numerically. Fig. 5 shows
that the numerical results, obtained for a wide range ofWe andΛ values, follow very closely thel/a(T ) function given
by equation (10). However, it must be also noticed that the numerical results deviate from the model for density ratios
Λ ≤ 0.4. Such deviation is due to the fact that the slenderness hypothesis is no longer satisfied.

The result shown in Fig.5 also indicates that the stretchingtime scales with the square root of the density ratio. Conse-
quently, the stretching process has a different time dependence withΛ than the breakup process previously described (see
Fig.4). This different trend can be explained by noticing that the break-up process may be divided into two separated
stages: an inertial one, in which the drop stretches in the way explained above, and a capillary driven pinch-off, similar to
that described in [11].

Since the second stage is much shorter than the first one, the break-up time may be assumed to be the time taken by the
drop to reach a transition radius,rtran, below which inertial effects are no longer important. Our Simulations showed that
this transition radius depends only on the density ratio. Hence, taken the asymptotic limit of Eq. (10) for long times, the
break-up time may be estimated as

tb ∼ −
√

Λ/We log rtran(Λ) (11)

Therefore, the break-up time grows faster than the square root of the density ratio since, in the range of parameters
considered here,rtran decreases monotonically withΛ.

CONCLUSIONS
The main features of the break-up of a drop or bubble in an homogeneous and isotropic turbulent flow have been repro-

duced under the potential flow approximation, assuming thatthe flow pattern producing the breakup is an axisymmetric
hyperbolic type of flow described by [3]. In the case of bubbles, the break-up time predicted by the numerical model
agrees very well with that experimentally measured by [9, 10] once the Weber number is properly defined.

The role of the inner fluid density in the break-up process hasalso been investigated. A first result of interest, which agrees
with experimental observations [2], is that, if the inner and outer fluid densities are comparable, the drop deforms intoa
slender ligament and ultimately breaks-up due to capillarypinch-off. Furthermore, since viscous diffusion is not included
in the model, it can be concluded that the break-up process isdriven by inertia forces. In addition, a simple analytical
model that accurately reproduces the numerically obtainedtime evolution of the drops radii in the cases ofWe � 1 and
Λ ∼ O(1) has also been developed .
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Environment and Sustainable Development Contract No. EVG1-CT-2001-00042 EXPRO and by the Spanish MCyT
under Project No. DPI2002-04550-C07-06.



LIST OF SYMBOLS
a0 Initial radius of the particle. t∆u, tc Convective and capillary times.
a Dimensionless radius of the ligament. u(r,z) Velocity components.
g Break-up rate of bubbles. We Weber number.
l Dimensionless ligament length. ∆u Velocity difference between the poles att = 0.

M Intensity of the straining flow. ε Dissipation rate of turbulent kinetic energy.
n(i,e) Normal vector to the interface. φ(i,e) Dimensionless inner and outer velocity potentials.
p(i,e) Inner and outer dimensionless pressures. Λ Density ratio between the inner and outer fluids.
rtran Dimensionless transition radius. ρ(i,e) Inner and outer densities.

tb, Tb Dimensional/Dimensionless break-up time. σ Surface tension coefficient.
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