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INTRODUCTION 

In many industrial applications, sprays are mainly characterized thanks to data related to drop size distributions. 
The characterization consists either in the determination of a limited number of diameters (the Sauter mean diameter, 
Dv90 for instance) or in the analysis of the whole drop size distribution. In the latter case, this brings a finer description 
of the drop size dispersion. For instance, this description becomes necessary when drop size distributions are multi-
modal. In addition, it is often preferred to get the drop size distribution as close as possible to the location of the liquid 
system breakup in order to carry out spray simulations. As a matter of fact, the characteristics of the droplets that are 
released into the computational domain have to be perfectly known in such simulations. 

The maximum entropy formalism was found to be a promising approach in the spray domain. This formalism is a 
statistical tool used for the prediction of a probability distribution when a partial information related to the studied 
system is known. This information is written under a set of constraints and the formalism suggests that the least biased, 
or most objective distribution, which satisfies the set of mathematical constraints, is the one that maximizes the 
statistical entropy that was introduced by Shannon [1]. 

In the last 25 years, some authors applied this approach to reconstruct drop size distributions of sprays. Babinsky 
and Sojka [2] detailed most of the published studies ([3] to [6]).  

Regarding the actual state of art in the application of the maximum entropy formalism on sprays, one can wonder 
how to choose the constraints and on which physical basis. This paper is intended to bring clues to answer this 
question. 

In the present study, the MEF approach is applied on artificial sprays issuing from one-dimensional simulations 
where the droplets are subject to aerodynamic forces only. The objective here is to find the most appropriate form of 
the constraints to write in order to reconstruct the drop size distribution that evolves as a function of the downstream 
distance. This study was conducted with the recent method of the application of the MEF developed by Cousin and 
Desjonquères [7]. This method has the advantage to allow the writing of any type of constraints contrary to the 
Lagrange’s multipliers method that is always used in the application on sprays. In the present paper, a single constraint 
will be considered. 
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ABSTRACT 
The present paper is intended to get a better understanding of the application of the Maximum Entropy Formalism (MEF). 

The maximum entropy formalism is a statistical tool that allows the prediction of the most objective probability distribution 
when a limited information on the studied system is known. Regarding the actual state of art, one of the most challenging 
objective is to know the type of information to brought as a function of the physics involved. This preliminary study focuses 
on the effects of the aerodynamic drag forces on the evolution of the drop size distribution in space. As a matter of fact, when 
the droplets of a spray are subject to these forces, the drop size distribution evolves as a function of space because the smallest 
drops are more decelerated than the bigger drops. This paper proposes to determine the information to write through the 
constraints in order to perform a reconstruction of the drop size distributions thanks to the recent mathematical method to 
apply the maximum entropy formalism on sprays. By considering different initial drop size distributions (uniform, gaussian 
and Nukiyama-Tanasawa), the present paper shows that the best adapted constraint to write is the definition of the mean drop 
diameter D(0.8,0). 
 



THEORETICAL ASPECTS 

The Maximum Entropy Formalism Approach 

The mathematical approach for the application of the Maximum Entropy Formalism is the one suggested by Cousin 
and Desjonquères [7]. In this paper, the drop size distribution is defined with a discrete description: the range of drop 
diameter is delimited by a minimum (Dmin) and a maximum (Dmax) value. The drop size spectrum is divided into 
n = 100 classes that have the same width. This number of classes was found sufficient to avoid a dependency of the 
results on this parameter. Each class i is characterized by an occurrence probability xi and a probability vector 
X(x1, x2,…,xn) is built. The method consists in finding the most objective vector X that is to say the one that verifies 
the normalization law: 
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the nh constraints that can take the following forms: 
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and that maximizes the relative entropy defined as : 
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where m is a reference or a priori probability distribution and corresponds to the reference state when no constraint is 
written. In the literature, when the number-based distribution is studied, this reference function does not appear 
explicitly because it is assumed to be a uniform distribution. 
In addition, in the present study, a single constraint is written: the definition of the mean drop diameter D(p,q) where p 
and q are real numbers: 
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where Di denotes the median diameter of the class i. 
 

Spray modeling 

This paper is limited to the analysis of the number-based distributions. Moreover the drop size distributions are 
temporally and spatially integrated. This choice comes directly from the fact that this type of representation is the one 
that is often deduced from measurements. 

In the following parts, different initial drop size distributions (uniform, gaussian and Nukiyama-Tanasawa) are 
considered. All the droplets are released with a same constant velocity U0 = 100 ms-1. Each droplet evolves in a single 
direction by assuming that it does not interact with the other droplets. In addition the particles are subject to 
aerodynamic drag forces only. These drag forces are mathematically taken into account with the use of the following 
expression for the drag coefficient CD : 
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where ρg and µg are the density and the dynamic viscosity of the ambient air respectively. In this study, the values of 
these two parameters are kept constant (ρg = 1.2 kgm-3 and µg = 1.8 10-5 kgm-1s-1). U is the velocity differential 
between the air and the droplet that is to say the drop velocity because air is supposed to be at rest. The choice of this 
drag law is subjective and may be revisited in future studies. 
 

Based on the results provided by Chin et al [8], after mathematical manipulations, it can be shown that if the initial 
number-based distribution is called dN/dD, the distribution at a given distance dN’/dD becomes:  
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where U(D) is the velocity of the droplet that has a diameter D at the given location. In such a case, the variations of 
the drop size distribution with the distance are due to aerodynamic effects only. As a matter of fact, as illustrated on 
Figure 1, even if droplets have the same initial velocity as it is assumed here, air drag forces cause the smaller drops to 
loose momentum faster than the bigger drops. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Schematic description of the drop size distribution evolution 
 

For instance, if we consider an initial gaussian number-based distribution, the distribution evolves as a function of 
the downstream distance z. This is the case on Figure 2 where all the droplets are released with a constant velocity set 
to 100 ms-1. By increasing z, the relative number of small drops is increased. The conditions of the calculation were 
chosen in order to ensure that the droplets are never stopped because this could generate an infinite number of drops. 
This large number of small droplets can be clearly seen at z = 50 mm. Figure 3 shows the deduced volume-based 
distributions. With this representation, the increase of the small droplets population is less clear because these droplets 
are representative of a small relative amount of liquid. In addition, the volume-based distribution does not reach zero 
for large values of diameter because the initial distribution does not present a tail that tends to zero for large diameters. 
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Fig. 2. Evolution of the number-based distribution Fig. 3. Evolution of the volume-based distribution 
 

APPLICATION 

In the present paper, three different initial number-based distributions are considered: a uniform, a gaussian and a 
Nukiyama-Tanasawa distribution. For all these cases, the range of drop diameter is limited from 30 to 130 micrometers 
and all the droplets are released with a constant velocity set to 100 ms-1. As this study is prospective, this choice is 
completely subjective and not related to any particular application. It is the reason why the considered drop size 
distributions are not necessarily realistic like the uniform distribution for instance. With the investigated distributions, 
the technique to employ the maximum entropy formalism is described as follows. For each distance z, it is possible to 
calculate any mean drop diameter D(p,q) from the spray simulations. The drop size distribution is then reconstructed 
with the maximum entropy formalism by considering a single constraint that is to say the definition of the mean drop 
diameter D(p,q) (see Equation 4). The objective of this study is to find the most appropriate constraint (that is to say 
the best couple (p,q)) and to see how the constraint that has to be written depends on the initial distribution. In order to 
limit the data in this short paper, the written constraints investigated are the definitions of the following drop diameters: 
D(0.6,0), D(0.7,0), D(0.8,0), D(0.9,0), D(1,0), D(2,0), D(3,2). The definition of the Sauter mean diameter is the only 
one that needs the particular technique developed by Cousin and Desjonquères [7]. However, this technique has always 
been used in the present paper. In order to carry out this study, the distributions issuing from the spray simulations are 

fn

D 

f’n

D z 

0 



compared with the one deduced from the application of the MEF. These comparisons are either performed qualitatively 
on the graphical representations or quantitatively by calculating the relative entropy whose expression is given in 
Equation 3. In this case, x represents the probability distribution deduced from the MEF and m is the distribution we 
try to reconstruct. Then, a maximum value of the relative entropy is representative of a reconstructed distribution close 
to the real one. 

 

Uniform initial distribution 

The first considered initial distribution is uniform; it is the simplest distribution although it is not the most 
representative distribution that can be found in real sprays. However, when the Maximum Entropy Formalism is 
employed to reconstruct the number-based drop size distribution, authors from the literature use this distribution as the 
reference distribution. Figure 4 shows clearly that increasing z leads to a strong increase of the small droplet 
population. Figure 5 shows the reconstructed distributions at the highest distance z = 50 mm by considering different 
constraints. This figure shows that the use of constraints with relative high orders (D(3,2) or D(2,0) for instance) is not 
well adapted. The choice of a constraint close to the definition of the arithmetic diameter seems to be adapted. This can 
be quantitatively verified on Table 1 where the relative entropy is calculated for the different tested constraints. One 
can see that the definition of D(0.7,0) is the one that maximizes the relative entropy. 
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Fig. 4. Evolution of the number-based distribution Fig. 5. Reconstruction of the drop size distribution 
(z = 50 mm) 

 
Constraint D(0.6,0) D(0.7,0) D(0.8,0) D(0.9,0) D(1,0) D(2,0) D(3,2) 

Relative entropy -0.0620 -0.0560 -0.0688 -0.0873 -0.0782 -0.1104 -0.1998 
 

Table 1. Relative entropy as a function of the chosen constraint (z = 50 mm) 
 

Gaussian distribution 

Figure 6 shows the evolution of the drop size distribution as a function of z with an initial gaussian distribution. 
Figure 7 shows the reconstructed distribution by considering different constraints at the distance z = 50 mm from the 
release location of the droplets. The chosen distance corresponds to the trickiest case. Regarding the special shape of 
the distribution to reconstruct, a single constraint seems to be not sufficient. However Table 2 shows that the constraint 
expressing D(0.8,0) is the most appropriate. 
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Fig. 6. Evolution of the number-based distribution Fig. 7. Reconstruction of the drop size distribution 
(z = 50 mm) 



 
 

Constraint D(0.6,0) D(0.7,0) D(0.8,0) D(0.9,0) D(1,0) D(2,0) D(3,2) 
Relative entropy -0.0346 -0.0300 -0.0274 -0.0288 -0.0325 -0.0478 -0.0862 

 
Table 2. Relative entropy as a function of the chosen constraint (z = 50 mm) 

 

Nukiyama-Tanasawa distribution 

Similar results are obtained by considering an initial Nukiyama-Tanasawa distribution as illustrated in Figure 8, 
Figure 9 and in Table 3. Once again, the use of the definition of the diameter D(0.8,0) seems to be the best single 
constraint to write. 
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Fig. 8. Evolution of the number-based distribution Fig. 9. Reconstruction of the drop size distribution 
(z = 50 mm) 

 
Constraint D(0.6,0) D(0.7,0) D(0.8,0) D(0.9,0) D(1,0) D(2,0) D(3,2) 

Relative entropy -0.0321 -0.0093 -0.0057 -0.0367 -0.0648 -0.0910 -0.1763 
 

Table 3. Relative entropy as a function of the chosen constraint (z = 50 mm) 
 

CONCLUSION 

This paper presents an application of a new method for the application of the maximum entropy formalism on 
sprays. The motivation of such a study is to get a better understanding of this type of application. As a matter of fact, 
regarding the actual state of art, the knowledge of the constraints to write as a function of the physical phenomena 
remains unsatisfactory. 

This paper was intended to highlight this question and to bring preliminary answers. As a matter of fact, the 
maximum entropy formalism was applied on numeric sprays where droplets were subject to a single physical 
phenomenon that is to say the aerodynamic forces. Such an approach takes the advantage to limit the complexity of the 
phenomena involved in the spatial and temporal evolution of a spray. However this method led to consider truncated 
distributions for small values of diameters because with such an approach, droplets whose diameter is smaller than 30 
micrometers would conduct to droplets having a zero velocity for large distance from the drop release location. In this 
case, this would lead to diverging drop size distributions. In order to overcome this problem, it would be interesting to 
inject droplets into a gaseous medium that keeps a constant velocity as it can be found on a standard experimental set-
up equipped with an extracting system. 

 
In the present study, three different initial drop size distributions were investigated: the uniform distribution that is 

the simplest one and two other distributions (gaussian and Nukiyama-Tanasawa) which are more realistic. 
Thanks to the notion of the relative entropy, it was shown that the best adapted constraint to write is the definition of 

the mean drop diameter D(0.8,0). For all the investigated situations, the type of constraint to write was found to be 
independent of the form of the initial distribution. This seems to show that the constraints to write is only related to the 
physical phenomenon and not on the value of the mean drop diameters as illustrated in Figure 10 where D(0.8,0) 
strongly depends on the choice of the initial distribution. 

These results should be verified by extending the study on other initial distributions and other ranges of drop 
diameters. In addition, a finer analysis could be also investigated by refining the choice of the constraint to write. As a 
matter of fact, when the definition of the mean diameter D(p,q) is written, finer steps on both p and q could be carried 
out. 
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Fig. 10. Evolution of D(0.8,0) with distance for the three tested initial distributions 

 
Finally, this preliminary study was found very promising; it encourages investigating the other physical phenomena 

present in the applications on sprays. For instance, it would be interesting to investigate phenomena such as droplet 
breakup, evaporation or coalescence. As it was done in this study, these phenomena should be considered 
independently in order to reduce the complexity of the problem. Thus, the following challenging step will consider the 
coupling of the different physical phenomena. 
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