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ABSTRACT 
This paper deals with extensions to the spray model of Beck and Watkins [1,2]. In their model, the moments of the droplet size 
distribution function are employed to characterize the spray. Transport equations are written for two moments that represent 
the liquid volume Q3 and surface area Q2, along with their respective moment-averaged momentum equations. In most cases 
the comparisons of the results with experimental data show that this model performs well. For a number of reasons, the 
equations need values for the two moments Q1 and Q0, representing total radius and droplet number. These are estimated in the 
Beck and Watkins model from an assumed size distribution function, truncated to fit the local value of Sauter mean radius, 
itself evaluated from Q3 and Q2. This paper presents a new model in which all four moment are evaluated from transport 
equations, thus allowing the form of the size distribution function to be determined from the values of the moments.  Different 
momentum equations are solved for each moment-averaged velocity component. Preliminary results indicate that the model is 
working as expected, but there are numerical problems to be overcome before the full model can be activated. 

 
INTRODUCTION 

 
The method of using moments of droplet size distributions to model sprays was first introduced by Beck and Watkins [1,2]. 
In this model, transport equations are written for Q3 and Q2 the two moments that represent the liquid volume and surface 
area. The velocities, Ul3 and Ul2, employed to convect these moments, are obtained by solving separate momentum equations 
for each. The other two moments, Q1 and Q0, representing total radius and droplet number, are approximated from a 
presumed drop number size distribution function, which is allowed to vary in space and time, but which requires truncation 
at either the small drop size or large drop size end of the distribution, in order to match the local value of the Sauter mean 
radius calculated from values of Q3 and Q2. The transport equations for both liquid and gaseous phases are written in 
Eulerian form, and coupled through source terms. These equations are solved using the finite-volume approach. 
 The work presented here is designed to remove, as much as is possible, the need to presume a particular distribution 
function for drop sizes. This is done by developing transport equations for Q1 and Q0, and their respective momentum 
equations. Thus the liquid phase is represented by four moment transport equations and four momentum equations. The 
development of the sub-models for the Q3 and Q2 equations, and their respective momentum equations, are set out in detail 
in [2]. The equivalent sub-models for Q1 and Q0 and their momentum equations, can be obtained in precisely the same way. 
The details of these derivations will therefore not be given here. Instead just the results of the derivation are presented in the 
next section.  

Although the need to prescribe a size distribution is much reduced in the current model over that of its predecessor, 
there are still three places in the model where such a distribution is required. These are: (i) Inlet/initial conditions: the result 
of primary or secondary (drop) break-up needs to be prescribed; (ii) The model is not closed: due to the form of drag model 
used, and its dependence on drop radii, the source terms of the momentum equations involve the moments Q-1 and Q-2. These 
must be modeled in terms of higher order moments. For this to be done a size distribution is required; (iii) Drop break-up 
involves only part of the spray distributions, i.e. the large drops. In order to calculate the effects on the moments, integration 
across part of the underlying distribution is needed. This can only be done if the distribution is prescribed. However, 
different distributions can be prescribed for these three effects. 
 
MATHEMATICAL MODEL 
 

The set of moment equations (i = 0, …, 3) can be compactly represented by: 
 

iQliji
j

i SUQ
xt

Q
−=

∂

∂

∂

∂
+ )(                            (1) 

The respective momentum equations can also be written compactly as: 
 

ijU
k

lij
li

k
likliji

k
liji S

x

U
Q

x
UUQ

x
UQ

t
−

∂

∂

∂

∂
=

∂

∂
+

∂

∂
)()()( υσυ                                        (2) 

mailto:b.yue@postgrad.umist.ac.uk
mailto:paul.watkins@umist.ac.uk


In these equations, the source terms SQi represent the effects on the moments of drop break-up, drop collisions and 
evaporation. The source terms SUij describe the effects of drag on the liquid momentums. All of these effects have been 
incorporated into the new model, although not all have yet been satisfactorily activated. The diffusion terms are treated the 
same for all momentums. This treatment is described in [2]. 
 
Gamma Distributions 
 
In the present model the three parts of the model, as discussed above, that require a given size number distribution are 
modeled through Gamma distributions. The general form of the Gamma number size distribution employed here is: 
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where r32 is the Sauter mean radius and Γ(k) is the Gamma function defined by the integral  
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and its form for positive k is shown in Fig. 1. 
 

 

 
Figure 1.Gamma Function 

 
The moments of this distribution are given by: 
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For the calculations shown later, inlet/initial conditions are modeled by taking k = 3.5. This is different from the distribution 
as assumed throughout the Beck and Watkins model [1], which took k = 2. The functional forms of equ. (3) for various 
values of k are shown in Fig. 2. 

 
Figure 2 Gamma Distribution Function with k = 2,5,10 and r32 = 15µm. 



For the drag model no assumption of the value of k is required. Instead equations (6) are used at each computational 
cell and time step to evaluate k from the calculated values of r32, Q2, Q1 and Q0. In fact, these equations over-prescribe k, as 
two, possibly different, values may result. Where conflict occurs, the value taken is the one nearest to the initial conditions, 
i.e. to 3.5 in the calculations made to date. This is to ensure numerical stability, as much as possible. 
 With k evaluated, integration over the size distribution yields 

                                                  
32

0
1

32

1
2 )1(

)2(
,

)2(

)2(

r

Q

k

k
Q

r

Q

k

k
Q

−

+
=

−

+
= −

−
−                                              (7) 

The insertion of these equations close the drag source terms in terms of known quantities. The presence of the k – 2 term in 
the denominator of the Q-2 equation introduces numerical problems if the k value falls too close to 2. It is for this reason that 
the initial value of k = 3.5 has been chosen. 
 
Truncated Gamma Distribution 
 

The break-up source terms require integration across part of the size distribution for drops with radii above a critical 
value rc to obtain truncated forms of Qi (i = -1, …, 2). Thus  
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The final integral in equation (9) is the Cumulative Gamma distribution function. 
For other values of i, analytical expression involving Q0,c can be obtained by partial integration, for example, 
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These equations close the break-up source terms.  
The collision model requires evaluation of the probability that a drop has a size that is less than a number of 

different critical drop sizes. This again requires the Cumulative Gamma function. 
 
Evaluation of the Cumulative Gamma Function 
 

To evaluate the expressions in equs. (9) and (10), values of the Cumulative Gamma function must be tabulated as a 
function of k and rc. So the task is to evaluate 
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For value of uc in the range 0< uc < ∞ , and for general values of k >1, partial integration of equ. (11) yields 
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By further partial integrations a recursion relation is derived: 
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This recursion is stopped when 1 < k � m < 2, because the functional form of Γc then varies over a much smaller range than 
for 0 < k � m < 1, as shown in Fig. 1 for the full Gamma function. 

Tabulation of Γc(k) for 1< k <2 is therefore required for a range of values of uc. Examples are illustrated in Fig. 3. It is 
clear that the tabulation can usefully be truncated at uc = 10. 
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Figure 3. Cumulative Gamma Function 

 
RESULTS 
 
This new model was incorporated into the computer code embodying the Beck and Watkins model. This particular code is 
designed for a nozzle injecting a narrow axisymmetric solid-cone spray into gas. With this code, it is easy to get useful data 
such as penetration and width of the spray, how the drops distribute in the chamber and so on. Because of on-going 
numerical instabilities it is not yet possible to make a complete run of the code with the break-up sub-model activated. Thus 
the results illustrated here do not have drop break-up or collisions. The evaporation sub-model [3] has been extended for the 
new model, and incorporated into the code, but has not yet been tested.  

Three cases of diesel injection into room temperature gas at elevated pressures [4] have been calculated. Figure 4 
shows results for the lowest pressure case, with an injector pressure of 9.9MPa injecting into gas at 1.1MPa. The 
distributions of the four moments, and their corresponding velocity vectors are shown after 1000 time steps at t =2ms. Those 
for the moments are normalized by the constant inlet values, which for this case are Q3in = 0.145, Q2in = 9.67x103, Q1in = 
7.88x108 and Q0in = 8.26x1013. These values are obtained in the injection cells next to the nozzle through the calculated 
volume fraction of liquid, giving Q3in, the assumed SMR at inlet yielding Q2in and the use of the prescribed Gamma 
distribution to give Q1in and Q0in. 
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Figure 4: Field values 
 

Note that the moment values are presented in negative log10 form. This is because of the rapid dispersion of the liquid 
resulting in values for the moments downstream that are orders of magnitude less than at inlet. The overall structures of the 
distributions of the moments are relatively similar. In these calculations, none of the source terms of the moment transport 



equations are active, and the same turbulent diffusion is applied to each one. Thus differences emerge only through different 
convection coefficients. These are different, as shown in the moment-averaged velocity fields, because the effects of drag on 
the moment-averaged velocities vary. For example, the volume-averaged velocity is generally larger than the surface area-
averaged one reflecting the increased effect of drag on clouds of drops that are smaller in size. This phenomenon does 
present a numerical problem at the edges and particularly at the front of the spray. If a particular moment is convected faster 
than another one, there is the possibility that the former moment may appear as non-zero in a computational cell, whereas the 
latter remains zero. Conceptually this is not possible as the moments all relate to the same cloud of drops and therefore either 
all the moments are present or none are. Restrictions on the moment-averaged velocities must therefore be applied in these 
regions to prevent this situation occurring. However, this is not required in the body of the spray. The effects of the different 
moment-averaged velocities are illustrated in the final two panels in Fig. 4. The first shows the SMR. This again is presented 
in log10 form, indicating the substantial changes occurring in the downstream spray. These changes result in both an increase 
in SMR in some regions, and a decrease elsewhere. The number 2 has been added to the values shown here to aid plotting by 
preventing negative values. Much of the spray exhibit values around 2 indicating only small changes from the inlet SMR. 
However, smaller values are found around the centreline illustrating the accumulation of smaller drops there as the larger 
drops migrate towards the edges and the front of the spray. This effect is shown by the relatively larger values found in these 
regions. Changes in the size distribution are also illustrated by the plot of the Gamma distribution parameter k of equ. (3). 
Much of the spray shows a k value that is smaller than the assumed inlet value of 3.5. This indicates that the size distribution 
is becoming more mono-dispersed as time progresses, due to the filtering effects of drag on the drops. The introduction of 
drop break-up and collision effects will undoubtedly change this picture somewhat. 
 Spray penetrations for the three cases examined are shown in comparison with the experimental data in Fig. 5. The 
comparisons are reasonable at this stage in the development of this method, although they not as good as produced by the 
Beck and Watkins model [1,2]. These results were produced using the same grid and time steps as results for the latter 
model. So either there are errors inherent in the new model, yet to be identified, or the neglect to date of drop dynamics 
effects are important. For example, neglect of drop break-up in the near nozzle region results in predicting too large drops on 
average leading to over-penetration. Conversely neglect of drop collisions downstream results in under-penetration. 
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Figure 5: Spray penetration comparisons with the data of Hiroyasu and Kadota [4] 

 
CONCLUSIONS 
 

A new model has been developed for the simulation of poly-dispersed sprays. The model is based on using a general 
Gamma Distribution function for the number size distribution in order to evaluate the first four moments of the distribution 
and their respective moment-averaged velocities from transport equations. The model has been incorporated into a CFD 
code, but needs to be more rigorously tested by comparing the results with a wide range of experimental data. Although the 
model incorporates sub-models for heat transfer, break-up, collisions and evaporation, these aspects of the model require 
further research, particularly in terms of numerical stability.  
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