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Abstract

Our goal is to build a CFD tool able to simulate the phenomenon of atomization, and particularly
the air-blasted planar liquid sheet. After many years of research in this area both from experimental
and theoretical approaches, scientific community is still very perplexed to explain basic physical
mechanisms driving a liquid sheet atomization. We present here the development of a DNS solver
for a two-phase incompressible flow with interface capturing feature for non miscible fluids. This
interface is captured by a Level-Set method, which has become very popular during the last ten
years. However, unlike classical approaches, stress tensor jump conditions through interface are
explicitly taken into account without introducing any smoothing. Different simulations of interfacial
instabilities are presented, we will show the potentiality of the Level-Set method coupled with an
explicit expression of jump conditions. Our first numerical simulations of a spatially developing
liquid sheet surrounded by co-flowing air streams at moderate velocities is presented.

Governing Equations

As we are mainly interested by the simulation of liquid sheet desintegration by coflowing air streams at moderate
velocities, we will use the incompressible Navier-Stokes equations :

∇.u = 0
∂u
∂t

+ (u · ∇)u = −1
ρ
(∇p +∇(2µD)) (1)

Hereu = (u, v, w) is the velocity,ρ the density,p the pressure andD is the viscous stress tensor. We consider
two immiscible viscous fluids, an interface clearly separate the two fluids through we can write the dynamic boundary
conditions :

[p]− n · [µD] · n = σκ
t · [µD] · n = 0 (2)

Hereσ is the surface tension coefficient,κ the curvature,n andt are respectively the normal and the tangent at
the interface. Basically, these relation imply a jump for the pressure at the interface and the appearance of a surface
force called surface tension, which do need an appropriate numerical treatment.

Numerical Methods

Navier-Stokes Solver

Before dealing with the special numerical treatment of the interface separation of two immiscible viscous fluids,
we need to build an efficient and accurate Navier-Stokes solver as we use a one fluid approach to deal with this prob-
lem. We use a classical projection method to enforce incompressibility constraint. Finite volume spatial discretization
is based on staggered MAC cartesian grid for the velocity components, all others quantities are cell-centered. The
convection terms in the momentum equations are approximated in a non-conservative way with5th order accurate
WENO schemes [1]. This particular choice has been motivated by the robustness and low numerical dissipation of
such schemes. Time integration is performed with a2nd Adams-Bashforth scheme. This kind of time integration
ensures a good temporal accuracy and only one pressure Poisson equation to solve each time step.



Level-Set Method and Redistance Equation

One need to define a mathematical function to locate in space and in time the interface. We chose to use the
Level-Set function to capture this interface. For a point of the computational domain,φ(x, y, z, t) is defined by the
signed normal (minimal) distance to the interface. This definition implies numerous interesting properties :

• the sign ofφ determine the position of each fluid

• interface is described by the zero level ofφ

• φ is a smooth function,||∇φ|| = 1

The time evolution of the Level-Set follows the advection equation :

φt + (u.∇)φ = 0 (3)

As for the momentum conservation equations, this equation is solved using a5th order non-conservative WENO
scheme for spatial discretization and time integration is performed by a3th order TVD Runge-Kutta scheme [1].

While advection Eq.(3) will move each level at the correct velocity, and particulary the interface contourφ = 0,
Level-Set function will no longer be a distance function (||∇φ|| 6= 1). In consequence, we obtain a lack of information
around the position of the interface. Since we use the distance property of the Level-Set for curvature interface
calculation, the result will be damaged. Indeed, the Level-Set function must be regularly reinitialized to keep signed
distance property. This is achieved by finding the steady state solution of the following Hamilton-Jacobi equation :

Φt = S(Φ0)(1− ||∇Φ||)

Φ(x, y, z, 0) = Φ0 = φ(x, y, z, t)
(4)

WhereS is the sign function. For numerical purposes it is useful to smooth this function. Eq.(4) has the property
thatφ remains unchanged at the interface, the zero ofΦ0 andΦ will be the same andΦ will converge away to the
interface to||∇Φ|| = 1. Eq.(4) is solved by a Godunov type scheme with a5th order WENO scheme [2].

Ghost Fluid Method

As we have already said, one need an adequate numerical treatment of the dynamic boundary equation at the
interface between two immiscible viscous fluids. We chose the Ghost Fluid Method for which one can obtain a
discontinuous numerical solution for the pressure whereas classical approaches to model surface tension incorporate
a smooth source term in momentum conservation equations, implying a smoothed pressure solution over few cells
around the interface location. With the Ghost Fluid Method, surface tension is treated in an implicit way, allowing
better approximation of the physic of the problem.

The idea of the Ghost Fluid Method is quite
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FIGURE 1: Ghost Fluid Method

simple and very efficient. If we use classical nu-
merical approaches to discretize a differential equa-
tion where the solution is discontinuous through
an interface, local discrete derivatives near inter-
face can’t be evaluated. If one considers a node
near the interface, one must use a node locate on
the other side of the interface to calculate the deriva-
tive, blue nodes on Fig.(1). To overcome this draw-
back, a ghost node is artificially created by contin-
uous prolongation of the node where the derivative
has to be calculated. The jump at the interface, ex-
plicitly taken into account via Eq.(2), is shifted on
this ghost node, red nodes on Fig.(1). This new
node can be used to calculate the local discrete derivative. In consequence, a ”ghost fluid” is created, which is the
continuous prolongation of one fluid on the other side of the interface. We can use an analogous reasoning if we
consider a derivative jump through the interface. The complete mathematical details can be found in [3]. We can
develop the boundary conditions Eq.(2) and obtain numerous jump conditions in each spatial direction for pressure as
for velocities and pressure derivatives.



Summary

First, we calculateφn+1 along the Eq.(3) with high order schemes. This choice have been done in order to ensure
incompressibility constraint,∇.un+1 = 0, in the sense that we use the interface position to discretize viscous terms
and the pressure Poisson equation in the projection method :

u∗ − un

∆t
+ (un.∇)un =

1
ρ
(∇(2µD)) (5)

∇.

(∇p

ρ

)
=

∇.u∗

∆t
(6)

un+1 − u∗

∆t
+
∇p

ρ
= 0 (7)

• Eq.(5) an intermediate velocityu∗ is determined. Convective terms are evaluated in a non-conservative way
with a 5th order WENO scheme. Viscous terms are evaluated using a classical finite volume method with a
specific treatment at the interface using the Ghost Fluid Method.

• Eq.(6) this classical Poisson equation is discretized using the Ghost Fluid Method. The MGCG method of
Tatebe [4] is used to solve our system of equations, in other words, to invert the resulting matrix. This method,
based on a conjugate gradient algorithm preconditioned by a multigrid method, is very fast and robust despite
the ill-conditioned problem resulting from the Ghost Fluid Method.

• Eq.(7) the Ghost Fluid Method is again used to evaluate the pressure gradient

Assuming an explicit scheme to advance in time our system, time step have to be restrict. It is done in the same
way of Fedkiw and al. [5].

Interfacial Instabilities Simulations

Numerous academic test cases have been calculated in order to check stability and accuracy of the developed DNS
code, like static air bubble, showing us the accuracy of the Ghost Fluid Method [6]. Oscillating liquid drop or damped
surface wave are another test problems where surface tension is dominant, and results are very close with the analytic
solution.

Rayleigh-Taylor Instability

A classical test problem for two-phase flow simulation is the Rayleigh-Taylor instability, where a heavy fluid is
placed on the top of a light fluid with a small initial perturbation of the interface.

We present here results for a short time evolution,
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FIGURE 2: Rayleigh-Taylor Instability Simulation

where an initial sinusoidal perturbation is growing, ac-
cording to the inviscid linear theory, exponentially with
time asent with a growth rate given by :

n2 = kg(
ρg − ρl

ρg + ρl
− k2σ

g(ρg + ρl)
) (8)

Herek is the wave number of the perturbation,g the
gravity, σ the surface tension coefficient,ρl the density
of the light fluid andρg the density of the heavy one.
From Eq.(8), we can define a critical surface tensionσc

for whichn = 0. On Fig.(2), we compare the theoretical
growth rate in the linear regime, black line, and the com-
puted ones, color points (ρl = 3 kg/m3, ρg = 1 kg/m3,
k = 1 m−1 and g = 10 m/s2). We can observe a
good agreement between calculations and theory even for
coarse grids.



Kelvin-Helmholtz Instability

The Kelvin-Helmholtz instability of an initially flat interface separating two fluids moving with different velocities
is the closest well understood problem of the liquid sheet primary atomization. This problem show us how a perturbed
sheared interface evolves in time into a row of vortices or how surface tension can develop fingers breaking into drops.
Because of a lack of space, we just present here two simulations with same dimensional parameters of Tryggvason
and al. [7].

FIGURE 3: Numerical simulation of the Kelvin-Helmholtz instability (interface and vorticity contours) with a
resolution of 256x256 grid points

Results are very close with ones found in [7] where a front tracking method is used to capture interface, interface
shape and vortex position are approximatively the same.

Air-Blasted Liquid Sheet Simulations

Two-dimensional Spatial Simulations

Simulation of the air-blasted liquid sheet is the main goal of this work. Liquid jet breakup and atomization by
a high-speed gas stream is a complicated multi-parameter two-phase flow problem. Detailed studies of fundamental
breakup mechanisms are needed in order to derive predictive models in combustion applications. Although most
commercial configurations have an axysymmetric design, two-dimensional geometry is very popular because of its
simplicity. A thin sheet of liquid is injected between two plates, respecting a Poiseuille flow, sheared by two air
boundary streams from both side. There are several non-dimensional parameters which appear to be revelent, even if
this question is still open :

Reg =
ρgUgδ

µg
, Rel

=
ρlUla

µl
, We =

ρg(Ug − Ul)
2
a

σ
, M =

ρgUg
2

ρlUl
2

(9)

Ug id the outer air velocity,δ the boundary thickness,Ul is the mean liquid velocity,2a the liquid sheet thickness
andσ the surface tension coefficient. We have performed several simulations with the same physical parameters,
except outer air velocity.

FIGURE 4: Numerical simulation of spatially developing air-blasted liquid sheet instabilities (interface and vorticity
contours)Reg = 103, Rel

= 53, We = 16, M = 1.226



For this first simulation Fig.(4), a moderate outer air velocity is considered (Ug = 20 m.s−1). Inflow perturbation
is done by applying a random field independently on each side of the liquid sheet. The momentum flux ratioM
is close to one in order to ensure a quick energy transfer from gas to liquid. For this air-blasted velocity, interface
evolution is relatively simple resulting a poor atomization. However, physical mechanisms driving atomization are
more evident in this case. An important vorticity sheet is localized on the maximum amplitude of the interface which
produces downstream a vortex.

FIGURE 5: Numerical simulation of spatially developing air-blasted liquid sheet instabilities (interface and vorticity
contours)Reg

= 207, Rel
= 53, We = 73, M = 4.9

This second simulation Fig.(5) has been done by doubling outer air velocity (Ug = 40 m.s−1). Interface evolution
is much more complicated, numerous vortex are created downstream fingers. Liquid sheet is quickly broken into blobs
which are accelerated by the air flow. However, this simulation suffers from mass loss, the biggest problem of the
Level-Set method, coming from the fact that numerical redistancing Eq.(4) tends to move the zero level. In order to
tackle this problem, we want to couple in the future our Level-Set method with an another interface tracking method,
like front tracking or VOF, in order to ensure mass conservation.

Three-dimensional Temporal Simulations

Experimental investigation on an air-blasted liquid sheet clearly show us tridimensional instabilities despite the
two-dimensional configuration. This phenomenon is as important as the air velocity is important. To take into account
this effect, we have performed tridimensional simulation. Unfortunately, we don’t have the possibility to perform
spatial tridimensional simulation because the number of grid points needed is too important, we are presently limitated
to temporal simulation. For the two simulations below, an initially flat liquid sheet is perturbed by longitudinal and
spanwise modes.

FIGURE 6: Numerical Simulation of Tridimensional Periodic Developing Air-Blasted Liquid Sheet Instabilities (left
case and right case have respectively the same physical parameters than Fig.(4) and Fig.(5))



On the left case, we can see the formation of two fingers. On the right case, as the spatial simulation, interface
evolution is much more intricated with a higher atomization level.

Conclusion

In this paper, we have developed a efficient DNS two-phase flow code and performed our first simulations of the
air-blasted liquid sheet. We will continue our effort to develop this code, and particulary we will write an algorithm
to ensure mass conservation, it will be probably a coupling with an another interface tracking method. We will
continue to simulate the air-blasted liquid sheet with a parametric study of revelent parameters driving the liquid sheet
atomization.

Nomenclature

Latin

2a [m] liquid sheet thickness
D [s−1] viscous stress tensor
g [m.s−2] gravity
k [m−1] wave number
M - momentum flux ratio
n [s−1] growth rate
p [N.m−2] pressure
Re - Reynolds number
u [m.s−1] velocity vector
We - Weber number

Greek

δ [m] air boundary thickness
κ [m−1] interface curvature
µ [N.s.m−2] dynamic viscosity
ρ [kg.m−3] density
σ [N.m−1] surface tension coefficient
φ [m] Level-Set function

Subscript

l liquid
g gas
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